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C h a p t e r  3 The Structure of 

Crystalline Solids

(a) X-ray diffraction

photograph [or Laue

photograph (Section 3.16)]

for a single crystal of magne-

sium. (b) Schematic diagram

illustrating how the spots (i.e.,

the diffraction pattern) in (a)

are produced. The lead screen

blocks out all beams generated

from the x-ray source, except

for a narrow beam traveling in

a single direction. This incident

beam is diffracted by individ-

ual crystallographic planes in

the single crystal (having

different orientations), which

gives rise to the various dif-

fracted beams that impinge on

the photographic plate. Inter-

sections of these beams with

the plate appear as spots when

the film is developed. The

large spot in the center of

(a) is from the incident beam,

which is parallel to a [0001]

crystallographic direction. It

should be noted that the

hexagonal symmetry of

magnesium’s hexagonal close-

packed crystal structure [shown in (c)] is indicated by the diffraction spot pattern that

was generated.

(d) Photograph of a single crystal of magnesium that was cleaved (or split) along

a (0001) plane—the flat surface is a (0001) plane. Also, the direction perpendicular to

this plane is a [0001] direction.

(e) Photograph of a “mag wheel”—a light-weight automobile wheel that is made

of magnesium.

[Figure (a) courtesy of J. G. Byrne, Department of Metallurgical Engineering,

University of Utah. Figure (b) from J. E. Brady and F. Senese, Chemistry: Matter and

Its Changes, 4th edition. Copyright © 2004 by John Wiley & Sons, Hoboken, NJ.

Reprinted by permission of John Wiley & Sons, Inc. Figure(e) iStockphoto.]

(a)

(d)

(e)

X-ray source

Lead screen
Photographic plate

Diffracted
beams

Incident
beam

Single crystal

(b)

(c)

JWCL187_ch03_044-089.qxd  11/9/09  7:45 PM  Page 44



Learn ing Object ives

After studying this chapter you should be able to do the following:

1. Describe the difference in atomic/molecular

structure between crystalline and noncrys-

talline materials.

2. Draw unit cells for face-centered cubic, body-

centered cubic, and hexagonal close-packed

crystal structures.

3. Derive the relationships between unit cell edge

length and atomic radius for face-centered cu-

bic and body-centered cubic crystal structures.

4. Compute the densities for metals having face-

centered cubic and body-centered cubic crys-

tal structures given their unit cell dimensions.

5. Given three direction index integers, sketch

the direction corresponding to these indices

within a unit cell.

6. Specify the Miller indices for a plane that has

been drawn within a unit cell.

7. Describe how face-centered cubic and hexagonal

close-packed crystal structures may be generated

by the stacking of close-packed planes of atoms.

8. Distinguish between single crystals and poly-

crystalline materials.

9. Define isotropy and anisotropy with respect to

material properties.

The properties of some materials are directly related to
their crystal structures. For example, pure and unde-
formed magnesium and beryllium, having one crystal
structure, are much more brittle (i.e., fracture at lower
degrees of deformation) than are pure and undeformed
metals such as gold and silver that have yet another
crystal structure (see Section 7.4).

Furthermore, significant property differences exist
between crystalline and noncrystalline materials having
the same composition. For example, noncrystalline ce-
ramics and polymers normally are optically transparent;
the same materials in crystalline (or semicrystalline)
form tend to be opaque or, at best, translucent.

In the processing/structure/properties/performance
scheme, reasons for studying the structure of crystalline
solids are as follows:
• A knowledge of the crystal structure for iron helps us

understand transformations that occur when steels are
heat treated to improve their mechanical properties
(Chapter 10). (Iron is the major constituent of steels.)

• The production of a glass-ceramic (Chapters 12 and
13) involves the formation of a glass that is subse-
quently transformed into a crystalline solid. This
chapter also discusses briefly the structure (on an
atomic level) of materials that are noncrystalline
(i.e., that form glasses).

WHY STUDY The Structure of Crystalline Solids?

3.1 INTRODUCTION
Chapter 2 was concerned primarily with the various types of atomic bonding, which

are determined by the electron structures of the individual atoms. The present dis-

cussion is devoted to the next level of the structure of materials, specifically, to some

of the arrangements that may be assumed by atoms in the solid state. Within this

framework, concepts of crystallinity and noncrystallinity are introduced. For crys-

talline solids the notion of crystal structure is presented, specified in terms of a unit

cell. The three common crystal structures found in metals are then detailed, along

with the scheme by which crystallographic points, directions, and planes are expressed.

Single crystals, polycrystalline materials, and noncrystalline materials are consid-

ered. Another section of this chapter briefly describes how crystal structures are

determined experimentally using x-ray diffraction techniques.

• 45
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(a) (b)

(c)

Figure 3.1 For the face-

centered cubic crystal

structure, (a) a hard-

sphere unit cell

representation, (b) a

reduced-sphere unit cell, and

(c) an aggregate of many

atoms. [Figure (c) adapted

from W. G. Moffatt, G. W.

Pearsall, and J. Wulff, The
Structure and Properties of
Materials, Vol. I, Structure, p.

51. Copyright © 1964 by

John Wiley & Sons, New

York. Reprinted by

permission of John Wiley &

Sons, Inc.]

Cr yst a l  St ructures

3.2 FUNDAMENTAL CONCEPTS
Solid materials may be classified according to the regularity with which atoms or ions

are arranged with respect to one another. A crystalline material is one in which the

atoms are situated in a repeating or periodic array over large atomic distances; that

is, long-range order exists, such that upon solidification, the atoms will position them-

selves in a repetitive three-dimensional pattern, in which each atom is bonded to its

nearest-neighbor atoms. All metals, many ceramic materials, and certain polymers

form crystalline structures under normal solidification conditions. For those that do

not crystallize, this long-range atomic order is absent; these noncrystalline or amor-
phous materials are discussed briefly at the end of this chapter.

Some of the properties of crystalline solids depend on the crystal structure of

the material, the manner in which atoms, ions, or molecules are spatially arranged.

There is an extremely large number of different crystal structures all having long-range

atomic order; these vary from relatively simple structures for metals to exceedingly

complex ones, as displayed by some of the ceramic and polymeric materials. The pres-

ent discussion deals with several common metallic crystal structures. Chapters 12 and

14 are devoted to crystal structures for ceramics and polymers, respectively.

When describing crystalline structures, atoms (or ions) are thought of as being

solid spheres having well-defined diameters. This is termed the atomic hard-sphere

crystalline

crystal structure
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model in which spheres representing nearest-neighbor atoms touch one another.

An example of the hard-sphere model for the atomic arrangement found in some

of the common elemental metals is displayed in Figure 3.1c. In this particular case

all the atoms are identical. Sometimes the term lattice is used in the context of crys-

tal structures; in this sense lattice means a three-dimensional array of points coin-

ciding with atom positions (or sphere centers).

3.3 UNIT CELLS
The atomic order in crystalline solids indicates that small groups of atoms form a

repetitive pattern. Thus, in describing crystal structures, it is often convenient to sub-

divide the structure into small repeat entities called unit cells. Unit cells for most crys-

tal structures are parallelepipeds or prisms having three sets of parallel faces; one is

drawn within the aggregate of spheres (Figure 3.1c), which in this case happens to be

a cube.A unit cell is chosen to represent the symmetry of the crystal structure, wherein

all the atom positions in the crystal may be generated by translations of the unit cell

integral distances along each of its edges. Thus, the unit cell is the basic structural unit

or building block of the crystal structure and defines the crystal structure by virtue

of its geometry and the atom positions within. Convenience usually dictates that par-

allelepiped corners coincide with centers of the hard-sphere atoms.Furthermore,more

than a single unit cell may be chosen for a particular crystal structure; however, we

generally use the unit cell having the highest level of geometrical symmetry.

3.4 METALLIC CRYSTAL STRUCTURES
The atomic bonding in this group of materials is metallic and thus nondirectional

in nature. Consequently, there are minimal restrictions as to the number and posi-

tion of nearest-neighbor atoms; this leads to relatively large numbers of nearest

neighbors and dense atomic packings for most metallic crystal structures. Also, for

metals, using the hard-sphere model for the crystal structure, each sphere repre-

sents an ion core. Table 3.1 presents the atomic radii for a number of metals. Three

relatively simple crystal structures are found for most of the common metals: face-

centered cubic, body-centered cubic, and hexagonal close-packed.

The Face-Centered Cubic Crystal Structure

The crystal structure found for many metals has a unit cell of cubic geometry, with

atoms located at each of the corners and the centers of all the cube faces. It is aptly

3.4 Metallic Crystal Structures • 47

Table 3.1 Atomic Radii and Crystal Structures for 16 Metals

Atomic Atomic
Crystal Radiusb Crystal Radius

Metal Structurea (nm) Metal Structure (nm)

Aluminum FCC 0.1431 Molybdenum BCC 0.1363

Cadmium HCP 0.1490 Nickel FCC 0.1246

Chromium BCC 0.1249 Platinum FCC 0.1387

Cobalt HCP 0.1253 Silver FCC 0.1445

Copper FCC 0.1278 Tantalum BCC 0.1430

Gold FCC 0.1442 Titanium (�) HCP 0.1445

Iron (�) BCC 0.1241 Tungsten BCC 0.1371

Lead FCC 0.1750 Zinc HCP 0.1332

aFCC � face-centered cubic; HCP � hexagonal close-packed; BCC � body-centered cubic.

bA nanometer (nm) equals 10�9 m; to convert from nanometers to angstrom units (Å),

multiply the nanometer value by 10.

lattice

unit cell
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called the face-centered cubic (FCC) crystal structure. Some of the familiar metals hav-

ing this crystal structure are copper, aluminum, silver, and gold (see also Table 3.1).

Figure 3.1a shows a hard-sphere model for the FCC unit cell, whereas in Figure 3.1b
the atom centers are represented by small circles to provide a better perspective of

atom positions. The aggregate of atoms in Figure 3.1c represents a section of crystal

consisting of many FCC unit cells.These spheres or ion cores touch one another across

a face diagonal; the cube edge length a and the atomic radius R are related through

(3.1)

This result is obtained in Example Problem 3.1.

For the FCC crystal structure, each corner atom is shared among eight unit cells,

whereas a face-centered atom belongs to only two. Therefore, one-eighth of each

of the eight corner atoms and one-half of each of the six face atoms, or a total of

four whole atoms, may be assigned to a given unit cell. This is depicted in Figure 3.1a,

where only sphere portions are represented within the confines of the cube. The

cell comprises the volume of the cube, which is generated from the centers of the

corner atoms as shown in the figure.

Corner and face positions are really equivalent; that is, translation of the cube

corner from an original corner atom to the center of a face atom will not alter the

cell structure.

Two other important characteristics of a crystal structure are the coordination
number and the atomic packing factor (APF). For metals, each atom has the same

number of nearest-neighbor or touching atoms, which is the coordination number.

For face-centered cubics, the coordination number is 12. This may be confirmed by

examination of Figure 3.1a; the front face atom has four corner nearest-neighbor

atoms surrounding it, four face atoms that are in contact from behind, and four other

equivalent face atoms residing in the next unit cell to the front, which is not shown.

The APF is the sum of the sphere volumes of all atoms within a unit cell (as-

suming the atomic hard-sphere model) divided by the unit cell volume—that is,

(3.2)

For the FCC structure, the atomic packing factor is 0.74, which is the maximum

packing possible for spheres all having the same diameter. Computation of this APF

is also included as an example problem. Metals typically have relatively large atomic

packing factors to maximize the shielding provided by the free electron cloud.

The Body-Centered Cubic Crystal Structure

Another common metallic crystal structure also has a cubic unit cell with atoms

located at all eight corners and a single atom at the cube center. This is called a

body-centered cubic (BCC) crystal structure. A collection of spheres depicting this

crystal structure is shown in Figure 3.2c, whereas Figures 3.2a and 3.2b are diagrams

of BCC unit cells with the atoms represented by hard-sphere and reduced-sphere

models, respectively. Center and corner atoms touch one another along cube diag-

onals, and unit cell length a and atomic radius R are related through

(3.3)

Chromium, iron, tungsten, as well as several other metals listed in Table 3.1 exhibit

a BCC structure.

a �
4R
13

APF �  
volume of atoms in a unit cell

total unit cell volume

a � 2R12

48 • Chapter 3 / The Structure of Crystalline Solids

coordination number

atomic packing
factor (APF)

body-centered cubic
(BCC)

Unit cell edge length
for body-centered
cubic

Definition of atomic
packing factor

Unit cell edge length
for face-centered
cubic

face-centered cubic
(FCC)

Crystal Systems and
Unit Cells for Metals

VMSE
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Two atoms are associated with each BCC unit cell: the equivalent of one atom

from the eight corners, each of which is shared among eight unit cells, and the sin-

gle center atom, which is wholly contained within its cell. In addition, corner and

center atom positions are equivalent. The coordination number for the BCC crys-

tal structure is 8; each center atom has as nearest neighbors its eight corner atoms.

Because the coordination number is less for BCC than FCC, so also is the atomic

packing factor for BCC lower—0.68 versus 0.74.

The Hexagonal Close-Packed Crystal Structure

Not all metals have unit cells with cubic symmetry; the final common metallic crystal

structure to be discussed has a unit cell that is hexagonal. Figure 3.3a shows a reduced-

sphere unit cell for this structure, which is termed hexagonal close-packed (HCP); an

3.4 Metallic Crystal Structures • 49

(a) (b) (c)

Figure 3.2 For the body-centered cubic crystal structure, (a) a hard-sphere unit cell

representation, (b) a reduced-sphere unit cell, and (c) an aggregate of many atoms. [Figure

(c) from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of
Materials, Vol. I, Structure, p. 51. Copyright © 1964 by John Wiley & Sons, New York.

Reprinted by permission of John Wiley & Sons, Inc.]

hexagonal close-
packed (HCP)

c

aA

B
C

J

E

G

H

F

D

(b)(a)

Figure 3.3 For the hexagonal close-packed crystal structure, (a) a reduced-sphere unit

cell (a and c represent the short and long edge lengths, respectively), and (b) an aggregate

of many atoms. [Figure (b) from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure
and Properties of Materials, Vol. I, Structure, p. 51. Copyright © 1964 by John Wiley & Sons,

New York. Reprinted by permission of John Wiley & Sons, Inc.]

Crystal Systems and
Unit Cells for Metals

VMSE
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assemblage of several HCP unit cells is presented in Figure 3.3b.1 The top and bottom

faces of the unit cell consist of six atoms that form regular hexagons and surround a

single atom in the center. Another plane that provides three additional atoms to the

unit cell is situated between the top and bottom planes. The atoms in this midplane

have as nearest neighbors atoms in both of the adjacent two planes. The equivalent of

six atoms is contained in each unit cell; one-sixth of each of the 12 top and bottom

face corner atoms, one-half of each of the 2 center face atoms, and all 3 midplane in-

terior atoms. If a and c represent, respectively, the short and long unit cell dimensions

of Figure 3.3a, the ratio should be 1.633; however, for some HCP metals this ratio

deviates from the ideal value.

The coordination number and the atomic packing factor for the HCP crystal struc-

ture are the same as for FCC: 12 and 0.74, respectively. The HCP metals include cad-

mium, magnesium, titanium, and zinc; some of these are listed in Table 3.1.

c�a
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EXAMPLE PROBLEM 3.1

Determination of FCC Unit Cell Volume

Calculate the volume of an FCC unit cell in terms of the atomic radius R.

Solution

In the FCC unit cell illustrated,

the atoms touch one another across a face-diagonal the length of which is 4R.

Because the unit cell is a cube, its volume is a3, where a is the cell edge length.

From the right triangle on the face,

or, solving for a,

(3.1)

The FCC unit cell volume VC may be computed from

(3.4)VC � a3 � 12R12 2 3 � 16R312

a � 2R12

a2 � a2 � 14R 2 2

a

a

4R

R

1 Alternatively, the unit cell for HCP may be specified in terms of the parallelepiped defined

by the atoms labeled A through H in Figure 3.3a. Thus, the atom denoted J lies within the

unit cell interior.

Crystal Systems and
Unit Cells for Metals

VMSE
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3.5 Density Computations • 51

Theoretical density
for metals

EXAMPLE PROBLEM 3.2

Computation of the Atomic Packing Factor for FCC

Show that the atomic packing factor for the FCC crystal structure is 0.74.

Solution

The APF is defined as the fraction of solid sphere volume in a unit cell, or

Both the total atom and unit cell volumes may be calculated in terms of the

atomic radius R. The volume for a sphere is , and because there are four

atoms per FCC unit cell, the total FCC atom (or sphere) volume is

From Example Problem 3.1, the total unit cell volume is

Therefore, the atomic packing factor is

3.5 DENSITY COMPUTATIONS
A knowledge of the crystal structure of a metallic solid permits computation of its

theoretical density through the relationship

(3.5)

where

EXAMPLE PROBLEM 3.3

Theoretical Density Computation for Copper

Copper has an atomic radius of 0.128 nm, an FCC crystal structure, and an

atomic weight of 63.5 g/mol. Compute its theoretical density and compare the

answer with its measured density.

Solution

Equation 3.5 is employed in the solution of this problem. Because the crystal

structure is FCC, n, the number of atoms per unit cell, is 4. Furthermore, the

atomic weight ACu is given as 63.5 g/mol. The unit cell volume VC for FCC

was determined in Example Problem 3.1 as where R, the atomic

radius, is 0.128 nm.

16R312,

 NA � Avogadro’s number 16.022 � 1023 atoms/mol 2

 VC � volume of the unit cell

 A � atomic weight

 n � number of atoms associated with each unit cell

r �
nA

VCNA

r

APF �
VS

VC
�
116

3 2pR3

16R312
� 0.74

VC � 16R312

VS � 14 2 43pR3 � 16
3pR3

4
3pR3

APF �
volume of atoms in a unit cell

total unit cell volume
�

VS

VC
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Substitution for the various parameters into Equation 3.5 yields

The literature value for the density of copper is 8.94 g/cm3, which is in very

close agreement with the foregoing result.

3.6 POLYMORPHISM AND ALLOTROPY
Some metals, as well as nonmetals, may have more than one crystal structure, a phe-

nomenon known as polymorphism. When found in elemental solids, the condition is

often termed allotropy. The prevailing crystal structure depends on both the temper-

ature and the external pressure. One familiar example is found in carbon: graphite is

the stable polymorph at ambient conditions, whereas diamond is formed at extremely

high pressures.Also, pure iron has a BCC crystal structure at room temperature, which

changes to FCC iron at 912�C (1674�F). Most often a modification of the density and

other physical properties accompanies a polymorphic transformation.

3.7 CRYSTAL SYSTEMS
Because there are many different possible crystal structures, it is sometimes conven-

ient to divide them into groups according to unit cell configurations and/or atomic

arrangements. One such scheme is based on the unit cell geometry, that is, the shape

of the appropriate unit cell parallelepiped without regard to the atomic positions in

the cell. Within this framework, an xyz coordinate system is established with its origin

at one of the unit cell corners; each of the x, y, and z axes coincides with one of the

three parallelepiped edges that extend from this corner, as illustrated in Figure 3.4.

The unit cell geometry is completely defined in terms of six parameters: the three edge

lengths a, b, and c, and the three interaxial angles a, b, and g. These are indicated in

Figure 3.4, and are sometimes termed the lattice parameters of a crystal structure.

On this basis there are seven different possible combinations of a, b, and c, and

a, b, and g, each of which represents a distinct crystal system. These seven crystal

systems are cubic, tetragonal, hexagonal, orthorhombic, rhombohedral,2 monoclinic,

and triclinic. The lattice parameter relationships and unit cell sketches for each are

 � 8.89 g/cm3

 �
14 atoms/unit cell 2 163.5 g/mol 2

[161211.28 � 10�8 cm 2 3/unit cell ] 16.022 � 1023 atoms/mol 2

r �
nACu

VCNA

�
nACu

116R3
 12 2NA

52 • Chapter 3 / The Structure of Crystalline Solids52 • Chapter 3 / The Structure of Crystalline Solids

polymorphism 

allotropy

2Also called trigonal.

z

y

x

a

�

b

c
�

�

Figure 3.4 A unit cell with x, y, and z coordinate axes,

showing axial lengths (a, b, and c) and interaxial angles 

(�, �, and �).

lattice parameters

crystal system
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3.7 Crystal Systems • 53

MATERIAL OF IMPORTANCE

Tin (Its Allotropic Transformation)

Another common metal that experiences an al-

lotropic change is tin. White (or �) tin, hav-

ing a body-centered tetragonal crystal structure at

room temperature, transforms, at 13.2�C (55.8�F),

to gray (or �) tin, which has a crystal structure sim-

ilar to diamond (i.e., the diamond cubic crystal

structure); this transformation is represented

schematically as follows:

White (	) tin

Cooling

13.2°C

Gray (�) tin

The rate at which this change takes place is extremely

slow; however, the lower the temperature (below

13.2�C) the faster the rate.Accompanying this white-

to-gray-tin transformation is an increase in volume

(27%), and, accordingly, a decrease in density (from

7.30 g/cm3 to 5.77 g/cm3). Consequently, this volume

expansion results in the disintegration of the white

tin metal into a coarse powder of the gray allotrope.

For normal subambient temperatures, there is no

need to worry about this disintegration process for

tin products, because of the very slow rate at which

the transformation occurs.

This white-to-gray-tin transition produced

some rather dramatic results in 1850 in Russia.The

winter that year was particularly cold, and record

low temperatures persisted for extended periods

of time.The uniforms of some Russian soldiers had

tin buttons, many of which crumbled because of

these extreme cold conditions, as did also many of

the tin church organ pipes. This problem came to

be known as the “tin disease.”

Specimen of white tin (left). Another specimen

disintegrated upon transforming to gray tin (right)

after it was cooled to and held at a temperature

below 13.2�C for an extended period of time.

(Photograph courtesy of Professor Bill Plumbridge,

Department of Materials Engineering, The Open

University, Milton Keynes, England.)

represented in Table 3.2. The cubic system, for which a � b � c and a � b � g �
90�, has the greatest degree of symmetry. The least symmetry is displayed by the tri-

clinic system, because and a 
 b 
 g.

From the discussion of metallic crystal structures, it should be apparent that

both FCC and BCC structures belong to the cubic crystal system, whereas HCP

falls within hexagonal. The conventional hexagonal unit cell really consists of three

parallelepipeds situated as shown in Table 3.2.

a 
 b 
 c
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Table 3.2 Lattice Parameter Relationships and Figures Showing Unit Cell

Geometries for the Seven Crystal Systems

Axial
Crystal System Relationships Interaxial Angles Unit Cell Geometry

Cubic

Hexagonal

Tetragonal

Rhombohedral 

(Trigonal)

Orthorhombic

Monoclinic

Triclinic a 
 b 
 g 
 90°a 
 b 
 c

a � g � 90° 
 ba 
 b 
 c

a � b � g � 90°a 
 b 
 c

a � b � g 
 90°a � b � c

a � b � g � 90°a � b 
 c

a � b � 90°, g � 120°a � b 
 c

a � b � g � 90°a � b � c

a
b

c
�

�

�

a
b

c
�

a
b

c

aa
a

�

a
a

c

aaa

c

a
a

a
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Concept Check 3.1

What is the difference between crystal structure and crystal system?

[The answer may be found at www.wiley.com/college/callister (Student Companion Site).]

It is important to note that many of the principles and concepts addressed

in previous discussions in this chapter also apply to crystalline ceramic and poly-

meric systems (Chapters 12 and 14). For example, crystal structures are most of-

ten described in terms of unit cells, which are normally more complex than those

for FCC, BCC, and HCP. In addition, for these other systems, we are often in-

terested in determining atomic packing factors and densities, using modified

forms of Equations 3.2 and 3.5. Furthermore, according to unit cell geometry,

crystal structures of these other material types are grouped within the seven crys-

tal systems.

Cr yst a l lographic  Points ,

Di rect ions ,  and P lanes

When dealing with crystalline materials, it often becomes necessary to specify a par-

ticular point within a unit cell, a crystallographic direction, or some crystallographic

plane of atoms. Labeling conventions have been established in which three num-

bers or indices are used to designate point locations, directions, and planes. The basis

for determining index values is the unit cell, with a right-handed coordinate system

consisting of three (x, y, and z) axes situated at one of the corners and coinciding

with the unit cell edges, as shown in Figure 3.4. For some crystal systems—namely,

hexagonal, rhombohedral, monoclinic, and triclinic—the three axes are not mutu-

ally perpendicular, as in the familiar Cartesian coordinate scheme.

3.8 POINT COORDINATES
The position of any point located within a unit cell may be specified in terms of its

coordinates as fractional multiples of the unit cell edge lengths (i.e., in terms of a, b,

and c). To illustrate, consider the unit cell and the point P situated therein as shown

in Figure 3.5. We specify the position of P in terms of the generalized coordinates

3.8 Point Coordinates • 55

z

x

q r s
P

y 

c

rb

qa

sc

a

b

Figure 3.5 The manner in which the q, r,

and s coordinates at point P within the

unit cell are determined. The q coordinate

(which is a fraction) corresponds to the

distance qa along the x axis, where a is

the unit cell edge length. The respective

r and s coordinates for the y and z axes

are determined similarly.
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q, r, and s where q is some fractional length of a along the x axis, r is some fractional

length of b along the y axis, and similarly for s. Thus, the position of P is designated

using coordinates q r s with values that are less than or equal to unity. Furthermore,

we have chosen not to separate these coordinates by commas or any other punctu-

ation marks (which is the normal convention).
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EXAMPLE PROBLEM 3.4

Location of Point Having Specified Coordinates

For the unit cell shown in the accompanying sketch (a), locate the point hav-

ing coordinates 1 .1
2

1
4

0.40 nm

0.46 nm

(a)

0.48 nm

z

x

y 

(b)

1

0.46 nm

0.12 nm M
N

O

P

1
4

1
2

z

x

y 
0.20 nm

Solution

From sketch (a), edge lengths for this unit cell are as follows: a � 0.48 nm,

b � 0.46 nm, and c � 0.40 nm. Furthermore, in light of the preceding discussion,

fractional lengths are q � , r � 1, and s � . Therefore, first we move from1
2

1
4

the origin of the unit cell (point M) qa � (0.48 nm) � 0.12 nm units along

the x axis (to point N), as shown in the (b) sketch. Similarly, we proceed 

rb � (1)(0.46 nm) � 0.46 nm parallel to the y axis, from point N to point O.

Finally, we move from this position, sc � (0.40 nm) � 0.20 nm units parallel

to the z axis to point P as noted again in sketch (b). This point P then corre-

sponds to the 1 point coordinates.1
2

1
4

1
2

1
4

EXAMPLE PROBLEM 3.5

Specification of Point Coordinates

Specify point coordinates for all atom positions for a BCC unit cell.

Solution

For the BCC unit cell of Figure 3.2, atom position coordinates correspond to

the locations of the centers of all atoms in the unit cell—that is, the eight cor-

ner atoms and single center atom. These positions are noted (and also num-

bered) in the following figure.
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z

y
1

5

7

6
9

4

32

8

x

a

a

a

Point Fractional Lengths Point
Number x axis y axis z axis Coordinates

1 0 0 0 0 0 0

2 1 0 0 1 0 0

3 1 1 0 1 1 0

4 0 1 0 0 1 0

5

6 0 0 1 0 0 1

7 1 0 1 1 0 1

8 1 1 1 1 1 1

9 0 1 1 0 1 1

1
2  

1
2  

1
2

1
2

1
2

1
2

Point coordinates for position number 1 are 0 0 0; this position is located

at the origin of the coordinate system, and, therefore, the fractional unit cell

edge lengths along the x, y, and z axes are, respectively, 0a, 0a, and 0a. Fur-

thermore, for position number 2, because it lies one unit cell edge length along

the x axis, its fractional edge lengths are a, 0a, and 0a, respectively, which yield

point coordinates of 1 0 0. The following table presents fractional unit cell

lengths along the x, y, and z axes, and their corresponding point coordinates

for each of the nine points in the preceding figure.

3.9 CRYSTALLOGRAPHIC DIRECTIONS
A crystallographic direction is defined as a line between two points, or a vector.

The following steps are used to determine the three directional indices:

1. A vector of convenient length is positioned such that it passes through the

origin of the coordinate system. Any vector may be translated throughout the

crystal lattice without alteration, if parallelism is maintained.

2. The length of the vector projection on each of the three axes is determined;

these are measured in terms of the unit cell dimensions a, b, and c.

3. These three numbers are multiplied or divided by a common factor to reduce

them to the smallest integer values.

4. The three indices, not separated by commas, are enclosed in square brackets,

thus: [uvw]. The u, v, and w integers correspond to the reduced projections

along the x, y, and z axes, respectively.

Crystallographic
Directions

VMSE
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For each of the three axes, there will exist both positive and negative coordi-

nates. Thus negative indices are also possible, which are represented by a bar over

the appropriate index. For example, the [ ]  direction would have a component

in the �y direction. Also, changing the signs of all indices produces an antiparallel

direction; that is, [ ] is directly opposite to [ ]. If more than one direction (or

plane) is to be specified for a particular crystal structure, it is imperative for the

maintaining of consistency that a positive–negative convention, once established,

not be changed.

The [100], [110], and [111] directions are common ones; they are drawn in the

unit cell shown in Figure 3.6.

111111

111
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z

y

x

[111]

[110]

[100]

Figure 3.6 The [100], [110], and [111] directions within a

unit cell.

EXAMPLE PROBLEM 3.6

Determination of Directional Indices

Determine the indices for the direction shown in the accompanying figure.

z

y

x

a

b

Projection on
y axis (b)

Projection on
x axis (a/2)

c

Solution

The vector, as drawn, passes through the origin of the coordinate system, and

therefore no translation is necessary. Projections of this vector onto the x, y,

and z axes are, respectively, , b, and 0c, which become 1, and 0 in terms

of the unit cell parameters (i.e., when the a, b, and c are dropped). Reduction

of these numbers to the lowest set of integers is accompanied by multiplica-

tion of each by the factor 2. This yields the integers 1, 2, and 0, which are then

enclosed in brackets as [120].

1
2,a�2
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EXAMPLE PROBLEM 3.7

Construction of Specified Crystallographic Direction

Draw a [1 0] direction within a cubic unit cell.

Solution

First construct an appropriate unit cell and coordinate axes system. In the

accompanying figure the unit cell is cubic, and the origin of the coordinate

system, point O, is located at one of the cube corners.

1

3.9 Crystallographic Directions • 59

This procedure may be summarized as follows:

x y z

Projections b 0c
Projections (in terms of a, b, and c) 1 0

Reduction 1 2 0

Enclosure [120]

1
2

a�2

z

+y–y
O

a

–a
a

[110] Direction

P

x

a

a

This problem is solved by reversing the procedure of the preceding example.

For this [1 0] direction, the projections along the x, y, and z axes are a, �a,

and 0a, respectively. This direction is defined by a vector passing from the ori-

gin to point P, which is located by first moving along the x axis a units, and

from this position, parallel to the y axis �a units, as indicated in the figure.

There is no z component to the vector, because the z projection is zero.

1

For some crystal structures, several nonparallel directions with different indices

are crystallographically equivalent; this means that the spacing of atoms along each

direction is the same. For example, in cubic crystals, all the directions represented

by the following indices are equivalent: [100], [ 00], [010], [0 0], [001], and [00 ]. As

a convenience, equivalent directions are grouped together into a family, which are

enclosed in angle brackets, thus: 81009. Furthermore, directions in cubic crystals having

the same indices without regard to order or sign—for example, [123] and [ 1 ]—

are equivalent. This is, in general, not true for other crystal systems. For example,

for crystals of tetragonal symmetry, [100] and [010] directions are equivalent,

whereas [100] and [001] are not.

32

111
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Hexagonal Crystals

A problem arises for crystals having hexagonal symmetry in that some crystallo-

graphic equivalent directions will not have the same set of indices. This is circum-

vented by utilizing a four-axis, or Miller–Bravais, coordinate system as shown in Fig-

ure 3.7. The three a1, a2, and a3 axes are all contained within a single plane (called

the basal plane) and are at 120� angles to one another. The z axis is perpendicular

to this basal plane. Directional indices, which are obtained as described earlier, will

be denoted by four indices, as [u tw]; by convention, the first three indices pertain

to projections along the respective a1, a2, and a3 axes in the basal plane.

Conversion from the three-index system to the four-index system,

is accomplished by the following formulas:

(3.6a)

(3.6b)

(3.6c)

(3.6d)

where primed indices are associated with the three-index scheme and unprimed with

the new Miller–Bravais four-index system. (Of course, reduction to the lowest set of in-

tegers may be necessary, as discussed earlier.) For example, the [010] direction becomes

[ ]. Several different directions are indicated in the hexagonal unit cell (Figure 3.8a).1210

 w � w¿
 t � �1u � y 2

y �
1

3
 12y¿ � u¿ 2

 u �
1

3
 12u¿ � y¿ 2

3u¿v¿w¿ 4 ¡ 3uvtw 4

y
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a1

a2

a3

z

120°

Figure 3.7 Coordinate axis system for a hexagonal unit cell

(Miller–Bravais scheme).

Figure 3.8 For the

hexagonal crystal system,

(a) the [0001], [ ], and

[ ] directions, and (b) the

(0001), ( ), and ( )

planes.

10101011

1120

1100
[0001]

(0001)

[1120]

[1100]

(1010)

(1011)

a1 a1

a2

a3
a3

zz

(a) (b)
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The plotting of crystallographic directions for hexagonal crystals is more

complicated than for crystals belonging to the other six systems. For hexagonal

it is sometimes more convenient to use the four-axis coordinate system shown in

Figure 3.9. As may be noted, a grid has been constructed on the basal plane that

consists of sets of lines parallel to each of the a1, a2, and a3 axes. The intersections

of two sets of parallel lines (e.g., those for a2, and a3) lie on and trisect the other

axis (e.g., divide a1 into thirds) within the hexagonal unit cell. In addition, the z axis

of Figure 3.9 is also apportioned into three equal lengths (at trisection points m
and n). We will refer to this scheme as a reduced-scale coordinate system.

Construction of a direction specified by four indices is carried out using a pro-

cedure similar to that described previously (which involves vector projections along

corresponding axes). In this case, rather than taking projections in terms of the lat-

tice parameters a (for a1, a2, and a3,) and c (for the z axis), we employ the reduced-

scale scheme of Figure 3.9—i.e., use and instead. This procedure is illustrated

in the following example problem.

c
3

a
3
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Figure 3.9 Reduced-scale coordinate axis

system for hexagonal unit cells that may be

used to plot crystallographic directions.

a1

n

m a2

a3

z

EXAMPLE PROBLEM 3.8

Conversion and Construction of Directional Indices for a
Hexagonal Unit Cell

(a) Convert the [111] direction into the four-index system for hexagonal crystals.

(b) Draw this direction within a reduced-scale coordinate system (per Fig-

ure 3.9).

(c) Now draw the [111] direction within a hexagonal unit cell that utilizes a

three-axis (a1, a2, z) coordinate system.

Solution

(a) This conversion is carried out using Equations 3.6a, 3.6b, 3.6c, and 3.6d,

in which

u¿ � 1  y¿ � 1  w¿ � 1
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Thus,

Multiplication of the preceding indices by 3 reduces them to the lowest

set, which yields values for u, v, t, and w of 1, 1, �2 and 3, respectively.

Hence, the [111] direction becomes [11 3].

(b) The following sketch (a) shows a hexagonal unit cell in which the reduced-

scale coordinate system has been drawn.

2

 w � w¿ � 1

 t � �1u � y 2 � � a
1

3
�

1

3
b � �

2

3

 y �
1

3
 12y¿ � u¿ 2 �

1

3
 [12 2 11 2 � 1] �

1

3

 u �
1

3
12u¿ � y¿ 2 �

1

3
 [ 12 2 11 2 � 1] �

1

3
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(a)
a1

n

C

B

A

D

m
a2

a3

z

E

a

a

a

c

o
r

p

q

s

a1

P

a2

z

R

O Q

(b)

Also, one of the three parallelepipeds comprising the hexagonal cell is

delineated—its corners are labeled with letters o-A-r-B-C-D-E-s, with the

origin of the a1-a2-a3-z axes coordinate system located at the corner labeled

o. It is within this unit cell that we draw the [11 3] direction. The projec-

tions along the a1, a2, a3, and z axes are, respectively , , , and (or

c). In constructing this direction vector we begin at the origin (point o), and

first proceed units along the a1 axis to point p, next from this point par-

allel to the a2 axis units to point q, then parallel to the a3 axis units

to point r, and finally we continue parallel to the z axis c units to point s.

Thus, [11 3] is represented by the vector that is directed from point o to

point s, as noted in the sketch.

(c) Of course, it is possible to draw the equivalent [111] direction using a

three-coordinate-axis (a1-a2-z) system and the conventional technique.

This is represented in sketch (b). In this case, projections on the a1, a2, and

2

�
2a
3

a
3

a
3

3c
3

�
2a
3

a
3

a
3

2
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z axes are a, a, and c, respectively. First we begin at the origin (point O),

then proceed a units along the a1 axis (to point P), next parallel to the a2

axis a units (to point Q), and finally parallel to the z axis c units (to point

R). Hence, the [111] direction is represented by the vector that passes from

O to R as shown.

It may be noted that this [111] direction is identical to [11 3] from part (b).

The alternative situation is to determine the indices for a direction that has been

drawn within a hexagonal unit cell. For this case it is convenient to use the a1-a2-z
three-coordinate-axis system and then convert these indices into the equivalent set for

the four-axis scheme. The following example problem demonstrates this procedure.

2
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EXAMPLE PROBLEM 3.9

Determination of Directional Indices for a Hexagonal
Unit Cell

Determine the directional indices (four-index system) for the direction shown

in the accompanying figure.

Solution

The first thing we need do is to determine indices for the vector referenced

to the three-axis scheme represented in the sketch. Because the direction vec-

tor passes through the origin of the coordinate system, no translation is nec-

essary. Projections of this vector onto the a1, a2, and z axes are 0a, �a, and 

respectively, which become 0, �1, and in terms of the unit cell parame-

ters. Reduction of these numbers to the lowest set of integers is possible by

multiplying each by the factor 2. This yields 0, �2, and 1, which are then en-

closed in brackets as [ ].021

1
2

c�2,

a1

a2

z

a

a

c

Projection on a2
axis (–a)

Projection on z
axis (c/2)
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Now it becomes necessary to convert these indices into an index set ref-

erenced to the four-axis scheme. This requires the use of Equations 3.6a, 3.6b,

3.6c, and 3.6d. For this [ ] direction

and

Multiplication of the preceding indices by 3 reduces them to the lowest set,

which yields values for u, v, t, and w of 2, �4, 2, and 3, respectively. Hence, the

direction vector shown in the figure is [ ].

3.10 CRYSTALLOGRAPHIC PLANES
The orientations of planes for a crystal structure are represented in a similar man-

ner. Again, the unit cell is the basis, with the three-axis coordinate system as rep-

resented in Figure 3.4. In all but the hexagonal crystal system, crystallographic planes

are specified by three Miller indices as (hkl). Any two planes parallel to each other

are equivalent and have identical indices. The procedure used to determine the h,

k, and l index numbers is as follows:

1. If the plane passes through the selected origin, either another parallel plane

must be constructed within the unit cell by an appropriate translation, or a

new origin must be established at the corner of another unit cell.

2. At this point the crystallographic plane either intersects or parallels each of

the three axes; the length of the planar intercept for each axis is determined

in terms of the lattice parameters a, b, and c.

3. The reciprocals of these numbers are taken. A plane that parallels an axis

may be considered to have an infinite intercept, and, therefore, a zero index.

4. If necessary, these three numbers are changed to the set of smallest integers

by multiplication or division by a common factor.3

5. Finally, the integer indices, not separated by commas, are enclosed within

parentheses, thus: (hkl).

An intercept on the negative side of the origin is indicated by a bar or minus

sign positioned over the appropriate index. Furthermore, reversing the directions

of all indices specifies another plane parallel to, on the opposite side of, and equi-

distant from the origin. Several low-index planes are represented in Figure 3.10.

2423

 w � w¿ � 1

 t � �1u � y 2 � � a
2

3
�

4

3
b �

2

3

 y �
1

3
12y¿ � u¿ 2 �

1

3
[12 2 1�2 2 � 0] � �

4

3

 u �
1

3
12u¿ � y¿ 2 �

1

3
[12 2 10 2 � 1�2 2 ] �

2

3

u¿ � 0    y¿ � �2    w¿ � 1

021
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3 On occasion, index reduction is not carried out (e.g., for x-ray diffraction studies that are

described in Section 3.16); for example, (002) is not reduced to (001). In addition, for

ceramic materials, the ionic arrangement for a reduced-index plane may be different from

that for a nonreduced one.

Crystallographic
Planes

VMSE

Miller indices
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One interesting and unique characteristic of cubic crystals is that planes and

directions having the same indices are perpendicular to one another; however, for

other crystal systems there are no simple geometrical relationships between planes

and directions having the same indices.

3.10 Crystallographic Planes • 65

EXAMPLE PROBLEM 3.10

Determination of Planar (Miller) Indices

Determine the Miller indices for the plane shown in the accompanying sketch (a).

z

y

x

a

b

Oc

z

y

x
(a) (b)

x�
–b

c/2

(012) Plane

z�

O
O�

z

x

y

z

x

y

z

x

y

(b)

(c)

(a)

O

(001) Plane referenced to
the origin at point O

(111) Plane referenced to
the origin at point O

(110) Plane referenced to the
origin at point O

Other equivalent
(001) planes

Other equivalent
(111) planes

Other equivalent
(110) planes

O

O

Figure 3.10 Representations of a series each of the (a) (001), (b) (110), and (c) (111)

crystallographic planes.
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Solution

Because the plane passes through the selected origin O, a new origin must be

chosen at the corner of an adjacent unit cell, taken as and shown in sketch

(b).This plane is parallel to the x axis, and the intercept may be taken as qa.The

y and z axes’ intersections, referenced to the new origin , are �b and ,

respectively. Thus, in terms of the lattice parameters a, b, and c, these inter-

sections are q, �1, and . The reciprocals of these numbers are 0, �1, and 2;

because all are integers, no further reduction is necessary. Finally, enclosure

in parentheses yields (0 2).

These steps are briefly summarized here:

1

1
2

c�2O¿

O¿

66 • Chapter 3 / The Structure of Crystalline Solids

z

y

x

a

b

–y

b
O

c

y

f

e

(a) (b)
x

Point of intersection
along y axis

z

g

h

(011) Plane

x y z

Intercepts qa �b
Intercepts (in terms of lattice parameters) q �1

Reciprocals 0 �1 2

Reductions (unnecessary)
Enclosure (0 2)1

1
2

c�2

EXAMPLE PROBLEM 3.11

Construction of Specified Crystallographic Plane

Construct a (0 1) plane within a cubic unit cell.1

Solution

To solve this problem, carry out the procedure used in the preceding exam-

ple in reverse order. To begin, the indices are removed from the parentheses,

and reciprocals are taken, which yields , �1, and 1. This means that the par-

ticular plane parallels the x axis while intersecting the y and z axes at �b and

c, respectively, as indicated in the accompanying sketch (a).This plane has been

drawn in sketch (b). A plane is indicated by lines representing its intersections

with the planes that constitute the faces of the unit cell or their extensions.

For example, in this figure, line ef is the intersection between the (0 1) plane

and the top face of the unit cell; also, line gh represents the intersection be-

tween this same (0 1) plane and the plane of the bottom unit cell face 

extended. Similarly, lines eg and fh are the intersections between (0 1) and

back and front cell faces, respectively.

1

1

1

q
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Atomic Arrangements

The atomic arrangement for a crystallographic plane, which is often of interest, de-

pends on the crystal structure. The (110) atomic planes for FCC and BCC crystal

structures are represented in Figures 3.11 and 3.12; reduced-sphere unit cells are

also included. Note that the atomic packing is different for each case. The circles

represent atoms lying in the crystallographic planes as would be obtained from a

slice taken through the centers of the full-sized hard spheres.

A “family” of planes contains all planes that are crystallographically equivalent—

that is, having the same atomic packing; a family is designated by indices that are en-

closed in braces—such as {100}. For example, in cubic crystals the (111), ( ), ( 11),

(1 ), (11 ), ( 1), ( 1 ), and (1 1) planes all belong to the {111} family. On the

other hand, for tetragonal crystal structures, the {100} family would contain only the

(100), ( 00), (010), and (0 0) because the (001) and (00 ) planes are not crystallo-

graphically equivalent. Also, in the cubic system only, planes having the same indices,

irrespective of order and sign, are equivalent. For example, both (1 3) and (3 2) be-

long to the {123} family.

Hexagonal Crystals

For crystals having hexagonal symmetry, it is desirable that equivalent planes have

the same indices; as with directions, this is accomplished by the Miller–Bravais sys-

tem shown in Figure 3.7. This convention leads to the four-index (hkil) scheme,

which is favored in most instances because it more clearly identifies the orientation

of a plane in a hexagonal crystal. There is some redundancy in that i is determined

by the sum of h and k through

(3.7)

Otherwise the three h, k, and l indices are identical for both indexing systems.

Figure 3.8b presents several of the common planes that are found for crystals hav-

ing hexagonal symmetry.

i � �(h � k )

12

111

11111111

1111
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A A B C

D E F

B

C

F

D

E

(a) (b)

Figure 3.11 (a) Reduced-

sphere FCC unit cell with

the (110) plane. (b)

Atomic packing of an

FCC (110) plane.

Corresponding atom

positions from (a) are

indicated.

A�

B�

C �

E �

D �

(a) (b)

A� B�

D � E�

C �

Figure 3.12
(a) Reduced-sphere

BCC unit cell with

the (110) plane.

(b) Atomic packing

of a BCC (110)

plane. Corresponding

atom positions from

(a) are indicated.

Planar Atomic
Arrangements

VMSE
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EXAMPLE PROBLEM 3.12

Determination of Miller–Bravais Indices for a Plane 
within a Hexagonal Unit Cell

Determine the Miller–Bravais indices for the plane shown in the hexagonal

unit cell.

Solution

To determine these Miller–Bravais indices, consider the plane in the figure

referenced to the parallelepiped labeled with the letters A through H at its

corners. This plane intersects the a1 axis at a distance a from the origin of the

a1-a2-a3-z coordinate axis system (point C). Furthermore, its intersections with

the a2 and z axes are �a and c, respectively. Therefore, in terms of the lattice

parameters, these intersections are 1, �1, and 1. Furthermore, the reciprocals

of these numbers are also 1, �1, and 1. Hence

and, from Equation 3.7,

Therefore the (hkil) indices are (1 01).

Notice that the third index is zero (i.e., its reciprocal � q), which means

that this plane parallels the a3 axis. Inspection of the preceding figure shows

that this is indeed the case.

1

 � �11 � 1 2 � 0

 i � �1h � k 2

 l � 1

 k � �1

 h � 1

a1

a
a

c

H

F

E

G

D

A

a2

a3

z

C

B
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3.11 LINEAR AND PLANAR DENSITIES
The two previous sections discussed the equivalency of nonparallel crystallographic

directions and planes. Directional equivalency is related to linear density in the sense

that, for a particular material, equivalent directions have identical linear densities.

The corresponding parameter for crystallographic planes is planar density, and

planes having the same planar density values are also equivalent.
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Linear density (LD) is defined as the number of atoms per unit length whose

centers lie on the direction vector for a specific crystallographic direction; that is,

(3.8)

Of course, the units of linear density are reciprocal length (e.g., nm�1, m�1).

For example, let us determine the linear density of the [110] direction for the

FCC crystal structure. An FCC unit cell (reduced sphere) and the [110] direction

therein are shown in Figure 3.13a. Represented in Figure 3.13b are the five atoms

that lie on the bottom face of this unit cell; here the [110] direction vector passes

from the center of atom X, through atom Y, and finally to the center of atom Z.

With regard to the numbers of atoms, it is necessary to take into account the shar-

ing of atoms with adjacent unit cells (as discussed in Section 3.4 relative to atomic

packing factor computations). Each of the X and Z corner atoms is also shared with

one other adjacent unit cell along this [110] direction (i.e., one-half of each of these

atoms belongs to the unit cell being considered), while atom Y lies entirely within

the unit cell. Thus, there is an equivalence of two atoms along the [110] direction

vector in the unit cell. Now, the direction vector length is equal to 4R (Figure 3.13b);

thus, from Equation 3.8, the [110] linear density for FCC is

(3.9)

In an analogous manner, planar density (PD) is taken as the number of atoms

per unit area that are centered on a particular crystallographic plane, or

(3.10)

The units for planar density are reciprocal area (e.g., nm�2, m�2).

For example, consider the section of a (110) plane within an FCC unit cell as

represented in Figures 3.11a and 3.11b. Although six atoms have centers that lie on

this plane (Figure 3.11b), only one-quarter of each of atoms A, C, D, and F, and

one-half of atoms B and E, for a total equivalence of just 2 atoms, are on that plane.

Furthermore, the area of this rectangular section is equal to the product of its length

and width. From Figure 3.11b, the length (horizontal dimension) is equal to 4R,

PD �  
number of atoms centered on a plane

area of plane

LD110 �
2 atoms

4R
�

1

2R

LD �  
number of atoms centered on direction vector

length of direction vector
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(a)

Z[110]

Z
Y

Y

X

X

(b)

R

Figure 3.13 (a) Reduced-sphere FCC unit cell with the [110] direction indicated. (b) The

bottom face-plane of the FCC unit cell in (a) on which is shown the atomic spacing in the

[110] direction, through atoms labeled X, Y, and Z.
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whereas the width (vertical dimension) is equal to 2R , because it corresponds

to the FCC unit cell edge length (Equation 3.1). Thus, the area of this planar re-

gion is (4R)( ) � , and the planar density is determined as follows:

(3.11)

Linear and planar densities are important considerations relative to the process of

slip—that is, the mechanism by which metals plastically deform (Section 7.4). Slip

occurs on the most densely packed crystallographic planes and, in those planes,

along directions having the greatest atomic packing.

3.12 CLOSE-PACKED CRYSTAL STRUCTURES
You may remember from the discussion on metallic crystal structures that both face-

centered cubic and hexagonal close-packed crystal structures have atomic packing fac-

tors of 0.74, which is the most efficient packing of equal-sized spheres or atoms. In

addition to unit cell representations, these two crystal structures may be described in

terms of close-packed planes of atoms (i.e., planes having a maximum atom or sphere-

packing density); a portion of one such plane is illustrated in Figure 3.14a. Both crys-

tal structures may be generated by the stacking of these close-packed planes on top of

one another; the difference between the two structures lies in the stacking sequence.

Let the centers of all the atoms in one close-packed plane be labeled A. Asso-

ciated with this plane are two sets of equivalent triangular depressions formed by

three adjacent atoms, into which the next close-packed plane of atoms may rest.

Those having the triangle vertex pointing up are arbitrarily designated as B posi-

tions, while the remaining depressions are those with the down vertices, which are

marked C in Figure 3.14a.

A second close-packed plane may be positioned with the centers of its atoms

over either B or C sites; at this point both are equivalent. Suppose that the B
positions are arbitrarily chosen; the stacking sequence is termed AB, which is

PD110 �
2 atoms

8R212
�

1

4R212

8R2122R12

12
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C C C C C

C C C C

C C C C C

C
B B B

B B B B

C C C

(b)

(a)

Figure 3.14 (a) A portion of

a close-packed plane of

atoms; A, B, and C positions

are indicated. (b) The AB
stacking sequence for close-

packed atomic planes.

(Adapted from W. G.

Moffatt, G. W. Pearsall, and

J. Wulff, The Structure and
Properties of Materials,
Vol. I, Structure, p. 50.

Copyright © 1964 by John

Wiley & Sons, New York.

Reprinted by permission of

John Wiley & Sons, Inc.)

Close-Packed
Structures (Metals)

VMSE

JWCL187_ch03_044-089.qxd  11/9/09  9:32 AM  Page 70



3.12 Close-Packed Crystal Structures • 71

A

A

A

B

B

Figure 3.15 Close-packed plane stacking

sequence for hexagonal close-packed.

(Adapted from W. G. Moffatt, G. W. Pearsall,

and J. Wulff, The Structure and Properties of
Materials, Vol. I, Structure, p. 51. Copyright

© 1964 by John Wiley & Sons, New York.

Reprinted by permission of John Wiley &

Sons, Inc.)

Figure 3.16 (a) Close-packed stacking sequence for face-centered cubic. (b) A corner has

been removed to show the relation between the stacking of close-packed planes of atoms

and the FCC crystal structure; the heavy triangle outlines a (111) plane. [Figure (b) from 

W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I,

Structure, p. 51. Copyright © 1964 by John Wiley & Sons, New York. Reprinted by permission

of John Wiley & Sons, Inc.]

(a) (b)

B

A

C

B

A

C

B

A

illustrated in Figure 3.14b. The real distinction between FCC and HCP lies in where

the third close-packed layer is positioned. For HCP, the centers of this layer are

aligned directly above the original A positions. This stacking sequence, ABABAB . . . ,
is repeated over and over. Of course, the ACACAC . . . arrangement would be equiv-

alent. These close-packed planes for HCP are (0001)-type planes, and the corre-

spondence between this and the unit cell representation is shown in Figure 3.15.

For the face-centered crystal structure, the centers of the third plane are situated

over the C sites of the first plane (Figure 3.16a). This yields an ABCABCABC . . .
stacking sequence; that is, the atomic alignment repeats every third plane. It is more

difficult to correlate the stacking of close-packed planes to the FCC unit cell. How-

ever, this relationship is demonstrated in Figure 3.16b. These planes are of the (111)

type; an FCC unit cell is outlined on the upper left-hand front face of Figure 3.16b,
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in order to provide a perspective. The significance of these FCC and HCP close-

packed planes will become apparent in Chapter 7.

The concepts detailed in the previous four sections also relate to crystalline

ceramic and polymeric materials, which are discussed in Chapters 12 and 14. We

may specify crystallographic planes and directions in terms of directional and Miller

indices; furthermore, on occasion it is important to ascertain the atomic and ionic

arrangements of particular crystallographic planes. Also, the crystal structures of a

number of ceramic materials may be generated by the stacking of close-packed

planes of ions (Section 12.2).

Cr yst a l l ine  and Noncr yst a l l ine  Mater ia l s

3.13 SINGLE CRYSTALS
For a crystalline solid, when the periodic and repeated arrangement of atoms is per-

fect or extends throughout the entirety of the specimen without interruption, the re-

sult is a single crystal. All unit cells interlock in the same way and have the same ori-

entation. Single crystals exist in nature, but they may also be produced artificially.They

are ordinarily difficult to grow, because the environment must be carefully controlled.

If the extremities of a single crystal are permitted to grow without any exter-

nal constraint, the crystal will assume a regular geometric shape having flat faces,

as with some of the gemstones; the shape is indicative of the crystal structure. A

photograph of a garnet single crystal is shown in Figure 3.17. Within the past few

years, single crystals have become extremely important in many of our modern tech-

nologies, in particular electronic microcircuits, which employ single crystals of sili-

con and other semiconductors.

3.14 POLYCRYSTALLINE MATERIALS
Most crystalline solids are composed of a collection of many small crystals or grains;
such materials are termed polycrystalline. Various stages in the solidification of a

polycrystalline specimen are represented schematically in Figure 3.18. Initially, small

crystals or nuclei form at various positions. These have random crystallographic
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grain

polycrystalline

Figure 3.17 Photograph of a garnet single crystal that was found in Tongbei, Fujian

Province, China. (Photograph courtesy of Irocks.com, Megan Foreman photo.)

single crystal
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orientations, as indicated by the square grids. The small grains grow by the successive

addition from the surrounding liquid of atoms to the structure of each.The extremities

of adjacent grains impinge on one another as the solidification process approaches com-

pletion. As indicated in Figure 3.18, the crystallographic orientation varies from grain

to grain. Also, there exists some atomic mismatch within the region where two grains

meet; this area, called a grain boundary, is discussed in more detail in Section 4.6.

3.15 ANISOTROPY
The physical properties of single crystals of some substances depend on the crystal-

lographic direction in which measurements are taken. For example, the elastic mod-

ulus, the electrical conductivity, and the index of refraction may have different val-

ues in the [100] and [111] directions. This directionality of properties is termed

anisotropy, and it is associated with the variance of atomic or ionic spacing with crys-

tallographic direction. Substances in which measured properties are independent of

the direction of measurement are isotropic. The extent and magnitude of anisotropic

effects in crystalline materials are functions of the symmetry of the crystal structure;

the degree of anisotropy increases with decreasing structural symmetry—triclinic

structures normally are highly anisotropic. The modulus of elasticity values at [100],

[110], and [111] orientations for several materials are presented in Table 3.3.

3.15 Anisotropy • 73

Figure 3.18 Schematic diagrams of the various stages in the solidification of a

polycrystalline material; the square grids depict unit cells. (a) Small crystallite nuclei. (b)

Growth of the crystallites; the obstruction of some grains that are adjacent to one another

is also shown. (c) Upon completion of solidification, grains having irregular shapes have

formed. (d) The grain structure as it would appear under the microscope; dark lines are

the grain boundaries. (Adapted from W. Rosenhain, An Introduction to the Study of
Physical Metallurgy, 2nd edition, Constable & Company Ltd., London, 1915.)

anisotropy

isotropic

grain boundary

(a) (b)

(c) (d)
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For many polycrystalline materials, the crystallographic orientations of the indi-

vidual grains are totally random. Under these circumstances, even though each grain

may be anisotropic, a specimen composed of the grain aggregate behaves isotropically.

Also, the magnitude of a measured property represents some average of the direc-

tional values.Sometimes the grains in polycrystalline materials have a preferential crys-

tallographic orientation, in which case the material is said to have a “texture.”

The magnetic properties of some iron alloys used in transformer cores are

anisotropic—that is, grains (or single crystals) magnetize in a 81009-type direction

easier than any other crystallographic direction. Energy losses in transformer cores

are minimized by utilizing polycrystalline sheets of these alloys into which have

been introduced a “magnetic texture”: most of the grains in each sheet have a
81009-type crystallographic direction that is aligned (or almost aligned) in the same

direction, which is oriented parallel to the direction of the applied magnetic field.

Magnetic textures for iron alloys are discussed in detail in the Material of Impor-

tance box in Chapter 20 following Section 20.9.

3.16 X-RAY DIFFRACTION: DETERMINATION 
OF CRYSTAL STRUCTURES

Historically, much of our understanding regarding the atomic and molecular

arrangements in solids has resulted from x-ray diffraction investigations; further-

more, x-rays are still very important in developing new materials. We will now give

a brief overview of the diffraction phenomenon and how, using x-rays, atomic in-

terplanar distances and crystal structures are deduced.

The Diffraction Phenomenon

Diffraction occurs when a wave encounters a series of regularly spaced obstacles

that (1) are capable of scattering the wave, and (2) have spacings that are compa-

rable in magnitude to the wavelength. Furthermore, diffraction is a consequence of

specific phase relationships established between two or more waves that have been

scattered by the obstacles.

Consider waves 1 and 2 in Figure 3.19a, which have the same wavelength ( )

and are in phase at point O– . Now let us suppose that both waves are scattered

in such a way that they traverse different paths. The phase relationship between the

scattered waves, which will depend upon the difference in path length, is important.

One possibility results when this path length difference is an integral number of

wavelengths. As noted in Figure 3.19a, these scattered waves (now labeled and )2¿1¿

O¿
l
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Table 3.3 Modulus of Elasticity Values for

Several Metals at Various Crystallo-

graphic Orientations

Modulus of Elasticity (GPa)

Metal [100] [110] [111]

Aluminum 63.7 72.6 76.1

Copper 66.7 130.3 191.1

Iron 125.0 210.5 272.7

Tungsten 384.6 384.6 384.6

Source: R. W. Hertzberg, Deformation and Fracture
Mechanics of Engineering Materials, 3rd edition.

Copyright © 1989 by John Wiley & Sons, New York.

Reprinted by permission of John Wiley & Sons, Inc.
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are still in phase. They are said to mutually reinforce (or constructively interfere

with) one another; and, when amplitudes are added, the wave shown on the right

side of the figure results. This is a manifestation of diffraction, and we refer to a

diffracted beam as one composed of a large number of scattered waves that mutu-

ally reinforce one another.

Other phase relationships are possible between scattered waves that will not lead

to this mutual reinforcement. The other extreme is that demonstrated in Figure 3.19b,

wherein the path length difference after scattering is some integral number of half-
wavelengths. The scattered waves are out of phase—that is, corresponding amplitudes

cancel or annul one another, or destructively interfere (i.e., the resultant wave has zero

amplitude), as indicated on the right side of the figure. Of course, phase relationships

intermediate between these two extremes exist, resulting in only partial reinforcement.

X-Ray Diffraction and Bragg’s Law

X-rays are a form of electromagnetic radiation that have high energies and short

wavelengths—wavelengths on the order of the atomic spacings for solids. When a

beam of x-rays impinges on a solid material, a portion of this beam will be scat-

tered in all directions by the electrons associated with each atom or ion that lies

within the beam’s path. Let us now examine the necessary conditions for diffrac-

tion of x-rays by a periodic arrangement of atoms.

Consider the two parallel planes of atoms A– and B– in Figure 3.20, which

have the same h, k, and l Miller indices and are separated by the interplanar

spacing dhkl. Now assume that a parallel, monochromatic, and coherent (in-phase)

B¿A¿
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after a scattering

event (waves and
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beam of x-rays of wavelength is incident on these two planes at an angle . Two

rays in this beam, labeled 1 and 2, are scattered by atoms P and Q. Constructive in-

terference of the scattered rays 1� and 2� occurs also at an angle � to the planes, if

the path length difference between 1�P�1� and 2–Q–2� (i.e., ) is equal

to a whole number, n, of wavelengths. That is, the condition for diffraction is

n� � (3.12)

or

(3.13)

Equation 3.13 is known as Bragg’s law; also, n is the order of reflection, which

may be any integer (1, 2, 3, . . .) consistent with sin not exceeding unity. Thus, we

have a simple expression relating the x-ray wavelength and interatomic spacing to

the angle of the diffracted beam. If Bragg’s law is not satisfied, then the interference

will be nonconstructive in nature so as to yield a very low-intensity diffracted beam.

The magnitude of the distance between two adjacent and parallel planes of atoms

(i.e., the interplanar spacing dhkl) is a function of the Miller indices (h, k, and l) as well

as the lattice parameter(s). For example, for crystal structures that have cubic symmetry,

(3.14)

in which a is the lattice parameter (unit cell edge length). Relationships similar to Equa-

tion 3.14, but more complex, exist for the other six crystal systems noted in Table 3.2.

Bragg’s law, Equation 3.13, is a necessary but not sufficient condition for dif-

fraction by real crystals. It specifies when diffraction will occur for unit cells having

atoms positioned only at cell corners. However, atoms situated at other sites (e.g., face

and interior unit cell positions as with FCC and BCC) act as extra scattering centers,

which can produce out-of-phase scattering at certain Bragg angles. The net result is

the absence of some diffracted beams that, according to Equation 3.13, should be

present. For example, for the BCC crystal structure, h � k � l must be even if dif-

fraction is to occur, whereas for FCC, h, k, and l must all be either odd or even.

dhkl �
a

2h2 � k2 � l 2

u

 � 2dhkl sin u

 nl � dhkl sin u � dhkl sin u

SQ � QT

SQ � QT

ul
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Concept Check 3.2

For cubic crystals, as values of the planar indices h, k, and l increase, does the dis-

tance between adjacent and parallel planes (i.e., the interplanar spacing) increase

or decrease? Why?

[The answer may be found at www.wiley.com/college/callister (Student Companion Site).]

Diffraction Techniques

One common diffraction technique employs a powdered or polycrystalline speci-

men consisting of many fine and randomly oriented particles that are exposed to

monochromatic x-radiation. Each powder particle (or grain) is a crystal, and hav-

ing a large number of them with random orientations ensures that some particles

are properly oriented such that every possible set of crystallographic planes will be

available for diffraction.

The diffractometer is an apparatus used to determine the angles at which dif-

fraction occurs for powdered specimens; its features are represented schematically

in Figure 3.21. A specimen S in the form of a flat plate is supported so that rotations

about the axis labeled O are possible; this axis is perpendicular to the plane of the

page. The monochromatic x-ray beam is generated at point T, and the intensities of

diffracted beams are detected with a counter labeled C in the figure. The specimen,

x-ray source, and counter are all coplanar.

The counter is mounted on a movable carriage that may also be rotated about

the O axis; its angular position in terms of 2� is marked on a graduated scale.4

Carriage and specimen are mechanically coupled such that a rotation of the speci-

men through � is accompanied by a 2� rotation of the counter; this ensures that the

incident and reflection angles are maintained equal to one another (Figure 3.21).

Collimators are incorporated within the beam path to produce a well-defined and

focused beam. Utilization of a filter provides a near-monochromatic beam.

As the counter moves at constant angular velocity, a recorder automatically plots

the diffracted beam intensity (monitored by the counter) as a function of ; 2� is2u
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4 Note that the symbol � has been used in two different contexts for this discussion. Here,

� represents the angular locations of both x-ray source and counter relative to the specimen

surface. Previously (e.g., Equation 3.13), it denoted the angle at which the Bragg criterion

for diffraction is satisfied.

O

�

2�

S

T

C

16
0°

14
0°

120°

100°80°

60°

40°

20°
0°

Figure 3.21 Schematic diagram of an

x-ray diffractometer; T � x-ray source,

S � specimen, C � detector, and 

O � the axis around which the

specimen and detector rotate.
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termed the diffraction angle, which is measured experimentally. Figure 3.22 shows a

diffraction pattern for a polycrystalline specimen of �-iron. The high-intensity peaks

result when the Bragg diffraction condition is satisfied by some set of crystallographic

planes. These peaks are plane-indexed in the figure.

Other powder techniques have been devised wherein diffracted beam intensity and

position are recorded on a photographic film instead of being measured by a counter.

One of the primary uses of x-ray diffractometry is for the determination of crys-

tal structure. The unit cell size and geometry may be resolved from the angular po-

sitions of the diffraction peaks, whereas arrangement of atoms within the unit cell

is associated with the relative intensities of these peaks.

X-rays, as well as electron and neutron beams, are also used in other types of

material investigations. For example, crystallographic orientations of single crystals

are possible using x-ray diffraction (or Laue) photographs. The (a) chapter-opening

photograph for this chapter was generated using an incident x-ray beam that was

directed on a magnesium crystal; each spot (with the exception of the darkest one

near the center) resulted from an x-ray beam that was diffracted by a specific set of

crystallographic planes. Other uses of x-rays include qualitative and quantitative

chemical identifications and the determination of residual stresses and crystal size.

EXAMPLE PROBLEM 3.13

Interplanar Spacing and Diffraction Angle Computations

For BCC iron, compute (a) the interplanar spacing and (b) the diffraction an-

gle for the (220) set of planes. The lattice parameter for Fe is 0.2866 nm. Also,

assume that monochromatic radiation having a wavelength of 0.1790 nm is

used, and the order of reflection is 1.

Solution

(a) The value of the interplanar spacing dhkl is determined using Equation

3.14, with a � 0.2866 nm, and h � 2, k � 2, and l � 0, because we are

considering the (220) planes. Therefore,

 �
0.2866 nm

212 2 2 � 12 2 2 � 10 2 2
� 0.1013 nm

 dhkl �
a

2h2 � k2 � l 2
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Figure 3.22
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(b) The value of � may now be computed using Equation 3.13, with n � 1,

because this is a first-order reflection:

The diffraction angle is , or

2� � (2)(62.13�) � 124.26�

2u

  u �  sin 
�110.884 2 � 62.13°

  sin u �
nl

2dhkl
�
11 2 10.1790 nm 2

12 2 10.1013 nm 2
� 0.884

3.17 NONCRYSTALLINE SOLIDS
It has been mentioned that noncrystalline solids lack a systematic and regular

arrangement of atoms over relatively large atomic distances. Sometimes such ma-

terials are also called amorphous (meaning literally “without form”), or supercooled

liquids, inasmuch as their atomic structure resembles that of a liquid.

An amorphous condition may be illustrated by comparison of the crystalline

and noncrystalline structures of the ceramic compound silicon dioxide (SiO2), which

may exist in both states. Figures 3.23a and 3.23b present two-dimensional schematic

diagrams for both structures of SiO2. Even though each silicon ion bonds to three

oxygen ions for both states, beyond this, the structure is much more disordered and

irregular for the noncrystalline structure.

Whether a crystalline or amorphous solid forms depends on the ease with which

a random atomic structure in the liquid can transform to an ordered state during so-

lidification. Amorphous materials, therefore, are characterized by atomic or molecular

structures that are relatively complex and become ordered only with some difficulty.

Furthermore, rapidly cooling through the freezing temperature favors the formation

of a noncrystalline solid, because little time is allowed for the ordering process.

Metals normally form crystalline solids,but some ceramic materials are crystalline,

whereas others, the inorganic glasses, are amorphous. Polymers may be completely

noncrystalline and semicrystalline consisting of varying degrees of crystallinity.

noncrystalline

amorphous

Figure 3.23 Two-dimensional schemes of the structure of (a) crystalline silicon dioxide

and (b) noncrystalline silicon dioxide.

(a) (b)

Silicon atom
Oxygen atom
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More about the structure and properties of amorphous ceramics and polymers is

contained in Chapters 12 and 14.

Concept Check 3.3

Do noncrystalline materials display the phenomenon of allotropy (or polymor-

phism)? Why or why not?

[The answer may be found at www.wiley.com/college/callister (Student Companion Site).]

SUMMARY

Fundamental Concepts

• Atoms in crystalline solids are positioned in orderly and repeated patterns that

are in contrast to the random and disordered atomic distribution found in non-

crystalline or amorphous materials.

Unit Cells

• Crystal structures are specified in terms of parallelepiped unit cells, which are

characterized by geometry and atom positions within.

Metallic Crystal Structures

• Most common metals exist in at least one of three relatively simple crystal 

structures:

Face-centered cubic (FCC), which has a cubic unit cell (Figure 3.1).

Body-centered cubic (BCC), which also has a cubic unit cell (Figure 3.2).

Hexagonal close-packed, which has a unit cell of hexagonal symmetry,

[Figure 3.3(a)].

• Unit cell edge length (a) and atomic radius (R) are related according to

Equation 3.1 for face-centered cubic, and

Equation 3.3 for body-centered cubic.

• Two features of a crystal structure are

Coordination number—the number of nearest-neighbor atoms, and

Atomic packing factor—the fraction of solid sphere volume in the unit cell.

Density Computations

• The theoretical density of a metal (	) is a function of the number of equivalent

atoms per unit cell, the atomic weight, unit cell volume, and Avogadro’s number

(Equation 3.5).

Polymorphism and Allotropy

• Polymorphism is when a specific material can have more than one crystal struc-

ture. Allotropy is polymorphism for elemental solids.

Crystal Systems

• The concept of crystal system is used to classify crystal structures on the basis of

unit cell geometry—that is, unit cell edge lengths and interaxial angles. There are

seven crystal systems: cubic, tetragonal, hexagonal, orthorhombic, rhombohedral

(trigonal), monoclinic, and triclinic.
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Point Coordinates

Crystallographic Directions

Crystallographic Planes

• Crystallographic points, directions, and planes are specified in terms of indexing

schemes.The basis for the determination of each index is a coordinate axis system

defined by the unit cell for the particular crystal structure.

The location of a point within a unit cell is specified using coordinates that

are fractional multiples of the cell edge lengths.

Directional indices are computed in terms of the vector projection on each

of the coordinate axes.

Planar (or Miller) indices are determined from the reciprocals of axial intercepts.

• For hexagonal unit cells, a four-index scheme for both directions and planes is

found to be more convenient.

Linear and Planar Densities

• Crystallographic directional and planar equivalencies are related to atomic lin-

ear and planar densities, respectively.

Linear density (for a specific crystallographic direction) is defined as the num-

ber of atoms per unit length whose centers lie on the vector for this di-

rection (Equation 3.8).

Planar density (for a specific crystallographic plane) is taken as the number of

atoms per unit area that are centered on the particular plane (Equation 3.10).

• For a given crystal structure, planes having identical atomic packing yet different

Miller indices belong to the same family.

Close-Packed Crystal Structures

• Both FCC and HCP crystal structures may be generated by the stacking of close-

packed planes of atoms on top of one another. With this scheme A, B, and C
denote possible atom positions on a close-packed plane.

The stacking sequence for HCP is ABABAB. . . .

For FCC the stacking sequence is ABCABCABC. . . .

• Close-packed planes for FCC and HCP are {111} and {0001}, respectively.

Single Crystals

Polycrystalline Materials

• Single crystals are materials in which the atomic order extends uninterrupted over

the entirety of the specimen; under some circumstances, single crystals may have

flat faces and regular geometric shapes.

• The vast majority of crystalline solids, however, are polycrystalline, being composed

of many small crystals or grains having different crystallographic orientations.

• A grain boundary is the boundary region separating two grains, wherein there is

some atomic mismatch.

Anisotropy

• Anisotropy is the directionality dependence of properties. For isotropic materi-

als, properties are independent of the direction of measurement.

X-Ray Diffraction: Determination of Crystal Structures

• X-ray diffractometry is used for crystal structure and interplanar spacing deter-

minations. A beam of x-rays directed on a crystalline material may experience
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diffraction (constructive interference) as a result of its interaction with a series

of parallel atomic planes.

• Bragg’s law specifies the condition for diffraction of x-rays—Equation 3.13.

Noncrystalline Solids

• Noncrystalline solid materials lack a systematic and regular arrangement of atoms

or ions over relatively large distances (on an atomic scale). Sometimes the term

amorphous is also used to describe these materials.
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Equation Page
Number Equation Solving for Number

3.1
Unit cell edge 

48
length, FCC

3.2
Atomic packing 

48
factor

3.3
Unit cell edge 

48
length, BCC

3.5
Theoretical density 

51
of a metal

3.8 Linear density 68

3.10 Planar density 69

3.13
Bragg’s law; wavelength– 

76interplanar spacing–

angle of diffracted beam

3.14
Interplanar spacing 

76for crystals having 

cubic symmetry 

dhkl �
a

2h2 � k2 � l2

nl � 2dhkl  sin  u

PD �  
number of atoms centered on a plane

area of plane

LD �  
number of atoms centered on direction vector

length of direction vector

r �
nA

VCNA

a �
4R

13

APF �
volume of atoms in a unit cell

total unit cell volume
�

VS

VC

a � 2R12

Symbol Meaning

a Unit cell edge length for cubic; unit cell x-axial length

A Atomic weight

dhkl Interplanar spacing for crystallographic planes having 

indices h, k, and l
n Order of reflection for x-ray diffraction

n Number of atoms associated with a unit cell

NA Avogadro’s number (6.022 � 1023 atoms/mol)

R Atomic radius

VC Unit cell volume

X-ray wavelength

r Density; theoretical density 

l

Equation Summary

List of Symbols
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Processing/Structure/Properties/Performance Summary

In this chapter we discussed crystal structure, the body-centered cubic crystal struc-

ture, and the ability of a metal to experience a change in its crystal structure (poly-

morphism). A knowledge of these concepts helps us understand the transformation

of BCC iron to martensite (which has another crystal structure) in Chapter 10. This

relationship is represented by the following diagram:

References • 83
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Also discussed was the notion of a noncrystalline material. Glass-ceramics

(Chapter 13) are formed as noncrystalline silica glasses (Chapter 12), which are then

heat-treated so as to become crystalline in nature. The following diagram notes this

relationship.
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QUESTIONS AND PROBLEMS

84 • Chapter 3 / The Structure of Crystalline Solids

Fundamental Concepts

3.1 What is the difference between atomic struc-

ture and crystal structure?

Unit Cells
Metallic Crystal Structures

3.2 If the atomic radius of aluminum is 0.143 nm,

calculate the volume of its unit cell in cubic

meters.

3.3 Show for the body-centered cubic crystal

structure that the unit cell edge length a and

the atomic radius R are related through

3.4 For the HCP crystal structure, show that the

ideal ratio is 1.633.

3.5 Show that the atomic packing factor for BCC

is 0.68.

3.6 Show that the atomic packing factor for HCP

is 0.74.

Density Computations

3.7 Iron has a BCC crystal structure, an atomic

radius of 0.124 nm, and an atomic weight of

55.85 g/mol. Compute and compare its theo-

retical density with the experimental value

found inside the front cover.

3.8 Calculate the radius of an iridium atom, given

that Ir has an FCC crystal structure, a density

of 22.4 g/cm3, and an atomic weight of 192.2

g/mol.

3.9 Calculate the radius of a vanadium atom,

given that V has a BCC crystal structure, a

density of 5.96 g/cm3, and an atomic weight of

50.9 g/mol.

3.10 A hypothetical metal has the simple cubic

crystal structure shown in Figure 3.24. If its

c�a

a � 4R�13.

atomic weight is 70.4 g/mol and the atomic ra-

dius is 0.126 nm, compute its density.

3.11 Zirconium has an HCP crystal structure and

a density of 6.51 g/cm3.

(a) What is the volume of its unit cell in cubic

meters?

(b) If the ratio is 1.593, compute the values
of c and a.

3.12 Using atomic weight, crystal structure, and

atomic radius data tabulated inside the front

cover, compute the theoretical densities of

lead, chromium, copper, and cobalt, and then

compare these values with the measured den-

sities listed in this same table.The ratio for

cobalt is 1.623.

3.13 Rhodium has an atomic radius of 0.1345 nm and

a density of 12.41 g/cm3. Determine whether

it has an FCC or BCC crystal structure.

3.14 The atomic weight, density, and atomic radius

for three hypothetical alloys are listed in the

following table. For each, determine whether

its crystal structure is FCC, BCC, or simple

cubic and then justify your determination. A

simple cubic unit cell is shown in Figure 3.24.

c�a

c�a

Figure 3.24 Hard-sphere unit cell representation of the

simple cubic crystal structure.

Atomic Atomic
Weight Density Radius

Alloy (g/mol) (g/cm3) (nm)

A 77.4 8.22 0.125

B 107.6 13.42 0.133

C 127.3 9.23 0.142 

3.15 The unit cell for tin has tetragonal sym-

metry, with a and b lattice parameters of

0.583 and 0.318 nm, respectively. If its density,

atomic weight,and atomic radius are 7.27 g/cm3,
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90 •

Imperfections in SolidsC h a p t e r  4

Atomic defects are 
responsible for reductions
of gas pollutant emissions
from today’s automobile
engines. A catalytic con-
verter is the pollutant-
reducing device that is 
located in the automo-
bile’s exhaust system. 
Molecules of pollutant
gases become attached to
surface defects of crystal-
line metallic materials
found in the catalytic 
converter. While attached
to these sites, the mole-
cules experience chemical
reactions that convert 
them into other non- or
less-polluting substances.

The Materials of Importance box
that follows Section 4.6 contains a

detailed description of this process.
(a) High-resolution transmission electron 
micrograph that shows surface defects on single
crystals of one material that is used in catalytic 
converters.
(b) Ceramic monolith on which the metallic

catalyst substrate is deposited.
(c) Schematic diagram of a catalytic converter.
(d) Schematic diagram showing the location of the

catalytic converter in an automobile’s exhaust
system.

[Figure (a) from W. J. Stark, L. Mädler, M. Maciejewski,
S. E. Pratsinis, A. Baiker, “Flame-Synthesis of Nanocrys-
talline Ceria/Zirconia: Effect of Carrier Liquid,” Chem.
Comm., 588–589 (2003). Reproduced by permission of
The Royal Society of Chemistry.]

(d)

(c)

(b)

(a)

:

:
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Learn ing Object ives

After studying this chapter you should be able to do the following:

1. Describe both vacancy and self-interstitial crys-

talline defects.

2. Calculate the equilibrium number of vacancies

in a material at some specified temperature,

given the relevant constants.

3. Name the two types of solid solutions and pro-

vide a brief written definition and/or schematic

sketch of each.

4. Given the masses and atomic weights of two 

or more elements in a metal alloy, calculate 

the weight percent and atom percent for each

element.

5. For each of edge, screw, and mixed dislocations:

(a) describe and make a drawing of the

dislocation,

(b) note the location of the dislocation line, and

(c) indicate the direction along which the dis-

location line extends.

6. Describe the atomic structure within the vicinity

of (a) a grain boundary and (b) a twin boundary.

The properties of some materials are profoundly influ-
enced by the presence of imperfections. Consequently,
it is important to have a knowledge about the types of
imperfections that exist and the roles they play in
affecting the behavior of materials. For example, the
mechanical properties of pure metals experience
significant alterations when alloyed (i.e., when impurity
atoms are added)—for example, brass (70% copper/30%
zinc) is much harder and stronger than pure copper
(Section 7.9).

Also, integrated-circuit microelectronic devices
found in our computers, calculators, and home
appliances function because of highly controlled
concentrations of specific impurities that are incorpo-
rated into small, localized regions of semiconducting
materials (Sections 18.11 and 18.15).

In the processing/structure/properties/performance
scheme, reasons for studying imperfections in solids are
as follows:
• For the processing of silicon as a semiconducting

material, it is important to specify impurity
concentration in appropriate units.

• Development of the desirable mechanical properties
for steel alloys relies on the presence of specific
impurities, some of which form solid solutions. Thus,
an understanding of the concept of a solid solution
is important.

• The mechanisms of hardening and strengthening for
steel alloys involve a crystalline defect called a
dislocation. In this chapter we discuss the dislocation
concept and the different types.

WHY STUDY Imperfections in Solids?

4.1 INTRODUCTION
Thus far it has been tacitly assumed that perfect order exists throughout crystalline

materials on an atomic scale. However, such an idealized solid does not exist; all

contain large numbers of various defects or imperfections. As a matter of fact, many

of the properties of materials are profoundly sensitive to deviations from crystalline

perfection; the influence is not always adverse, and often specific characteristics are

deliberately fashioned by the introduction of controlled amounts or numbers of

particular defects, as detailed in succeeding chapters.

Crystalline defect refers to a lattice irregularity having one or more of its

dimensions on the order of an atomic diameter. Classification of crystalline imper-

fections is frequently made according to geometry or dimensionality of the defect.

imperfection

• 91
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Several different imperfections are discussed in this chapter, including point defects
(those associated with one or two atomic positions), linear (or one-dimensional)

defects, and interfacial defects, or boundaries, which are two-dimensional. Impuri-

ties in solids are also discussed, because impurity atoms may exist as point defects.

Finally, techniques for the microscopic examination of defects and the structure of

materials are briefly described.

Point  Defects

4.2 VACANCIES AND SELF-INTERSTITIALS
The simplest of the point defects is a vacancy, or vacant lattice site, one normally

occupied from which an atom is missing (Figure 4.1). All crystalline solids contain

vacancies and, in fact, it is not possible to create such a material that is free of these

defects. The necessity of the existence of vacancies is explained using principles of

thermodynamics; in essence, the presence of vacancies increases the entropy (i.e.,

the randomness) of the crystal.

The equilibrium number of vacancies for a given quantity of material

depends on and increases with temperature according to

(4.1)

In this expression, N is the total number of atomic sites, is the energy required

for the formation of a vacancy, T is the absolute temperature1 in kelvins, and k is

the gas or Boltzmann’s constant. The value of k is 1.38 � 10�23 J/atom K, or 8.62 �
10�5 eV/atom K, depending on the units of .2 Thus, the number of vacanciesQv

#
#

Qv

Ny � N exp a�
Qy
kT
b

Nv

point defect

vacancy

Temperature
dependence of the
equilibrium number
of vacancies

Boltzmann’s
constant

Vacancy
Self-interstitial

Figure 4.1 Two-dimensional

representations of a vacancy and a

self-interstitial. (Adapted from W. G.

Moffatt, G. W. Pearsall, and J. Wulff,

The Structure and Properties of
Materials, Vol. I, Structure, p. 77.

Copyright © 1964 by John Wiley &

Sons, New York. Reprinted by

permission of John Wiley & 

Sons, Inc.)

1 Absolute temperature in kelvins (K) is equal to �C � 273.
2 Boltzmann’s constant per mole of atoms becomes the gas constant R; in such a case R �
8.31 J/mol K.#
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increases exponentially with temperature; that is, as T in Equation 4.1 increases, so

also does the expression exp �( /kT). For most metals, the fraction of vacancies

/N just below the melting temperature is on the order of 10�4; that is, one lattice

site out of 10,000 will be empty. As ensuing discussions indicate, a number of other

material parameters have an exponential dependence on temperature similar to

that of Equation 4.1.

A self-interstitial is an atom from the crystal that is crowded into an intersti-

tial site, a small void space that under ordinary circumstances is not occupied. This

kind of defect is also represented in Figure 4.1. In metals, a self-interstitial intro-

duces relatively large distortions in the surrounding lattice because the atom is sub-

stantially larger than the interstitial position in which it is situated. Consequently,

the formation of this defect is not highly probable, and it exists in very small con-

centrations, which are significantly lower than for vacancies.

Nv

Qv

4.3 Impurities in Solids • 93

self-interstitial

EXAMPLE PROBLEM 4.1

Number-of-Vacancies Computation 
at a Specified Temperature

Calculate the equilibrium number of vacancies per cubic meter for copper at

1000�C. The energy for vacancy formation is 0.9 eV/atom; the atomic weight

and density (at 1000�C) for copper are 63.5 g/mol and 8.4 g/cm3, respectively.

Solution

This problem may be solved by using Equation 4.1; it is first necessary, how-

ever, to determine the value of N, the number of atomic sites per cubic meter

for copper, from its atomic weight ACu, its density , and Avogadro’s number

NA, according to

(4.2)

Thus, the number of vacancies at 1000�C (1273 K) is equal to

 � 2.2 � 1025 vacancies/m3

 � 18.0 � 1028 atoms/m3 2  exp c�
10.9 eV 2

18.62 � 10�5 eV/K 2 11273 K 2
d

 Nv � N exp a�
Qv

kT
b

 � 8.0 � 1028 atoms/m3

 �
16.022 � 1023 atoms/mol 2 18.4 g/cm3 2 1106 cm3/m3 2

63 .5 g/mol

 N �
NAr

ACu

r

Number of atoms
per unit volume for
a metal

4.3 IMPURITIES IN SOLIDS
A pure metal consisting of only one type of atom just isn’t possible; impurity or for-

eign atoms will always be present, and some will exist as crystalline point defects.

In fact, even with relatively sophisticated techniques, it is difficult to refine metals

to a purity in excess of 99.9999%. At this level, on the order of 1022 to 1023 impu-

rity atoms will be present in one cubic meter of material. Most familiar metals are
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not highly pure; rather, they are alloys, in which impurity atoms have been added

intentionally to impart specific characteristics to the material. Ordinarily, alloying

is used in metals to improve mechanical strength and corrosion resistance. For ex-

ample, sterling silver is a 92.5% silver/7.5% copper alloy. In normal ambient envi-

ronments, pure silver is highly corrosion resistant, but also very soft. Alloying with

copper significantly enhances the mechanical strength without depreciating the cor-

rosion resistance appreciably.

The addition of impurity atoms to a metal will result in the formation of a solid
solution and/or a new second phase, depending on the kinds of impurity, their con-

centrations, and the temperature of the alloy. The present discussion is concerned

with the notion of a solid solution; treatment of the formation of a new phase is

deferred to Chapter 9.

Several terms relating to impurities and solid solutions deserve mention. With

regard to alloys, solute and solvent are terms that are commonly employed. Solvent
represents the element or compound that is present in the greatest amount; on oc-

casion, solvent atoms are also called host atoms. Solute is used to denote an ele-

ment or compound present in a minor concentration.

Solid Solutions

A solid solution forms when, as the solute atoms are added to the host material,

the crystal structure is maintained and no new structures are formed. Perhaps it is

useful to draw an analogy with a liquid solution. If two liquids, soluble in each other

(such as water and alcohol) are combined, a liquid solution is produced as the mol-

ecules intermix, and its composition is homogeneous throughout. A solid solution

is also compositionally homogeneous; the impurity atoms are randomly and uni-

formly dispersed within the solid.

Impurity point defects are found in solid solutions, of which there are two types:

substitutional and interstitial. For the substitutional type, solute or impurity atoms

replace or substitute for the host atoms (Figure 4.2). Several features of the solute

and solvent atoms determine the degree to which the former dissolves in the lat-

ter, as follows:

1. Atomic size factor. Appreciable quantities of a solute may be accommodated

in this type of solid solution only when the difference in atomic radii be-

tween the two atom types is less than about Otherwise the solute

atoms will create substantial lattice distortions and a new phase will form.

;15%.

alloy

solid solution

solute, solvent

substitutional solid
solution

interstitial solid
solution

Interstitial
impurity atom

Substitutional
impurity atom

Figure 4.2 Two-dimensional

schematic representations of

substitutional and interstitial

impurity atoms. (Adapted from

W. G. Moffatt, G. W. Pearsall,

and J. Wulff, The Structure and
Properties of Materials, Vol. I,

Structure, p. 77. Copyright ©

1964 by John Wiley & Sons,

New York. Reprinted by

permission of John Wiley &

Sons, Inc.)
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2. Crystal structure. For appreciable solid solubility the crystal structures for

metals of both atom types must be the same.

3. Electronegativity. The more electropositive one element and the more elec-

tronegative the other, the greater the likelihood that they will form an inter-

metallic compound instead of a substitutional solid solution.

4. Valences. Other factors being equal, a metal will have more of a tendency to

dissolve another metal of higher valency than one of a lower valency.

An example of a substitutional solid solution is found for copper and nickel.

These two elements are completely soluble in one another at all proportions. With

regard to the aforementioned rules that govern degree of solubility, the atomic radii

for copper and nickel are 0.128 and 0.125 nm, respectively; both have the FCC crys-

tal structure; and their electronegativities are 1.9 and 1.8 (Figure 2.7); finally, the

most common valences are �1 for copper (although it sometimes can be �2) and

�2 for nickel.

For interstitial solid solutions, impurity atoms fill the voids or interstices among

the host atoms (see Figure 4.2). For metallic materials that have relatively high

atomic packing factors, these interstitial positions are relatively small. Consequently,

the atomic diameter of an interstitial impurity must be substantially smaller than

that of the host atoms. Normally, the maximum allowable concentration of inter-

stitial impurity atoms is low (less than 10%). Even very small impurity atoms are

ordinarily larger than the interstitial sites, and as a consequence they introduce some

lattice strains on the adjacent host atoms. Problem 4.5 calls for determination of

the radii of impurity atoms (in terms of R, the host atom radius) that will just fit

into interstitial positions without introducing any lattice strains for both FCC and

BCC crystal structures.

Carbon forms an interstitial solid solution when added to iron; the maximum

concentration of carbon is about 2%. The atomic radius of the carbon atom is much

less than that for iron: 0.071 nm versus 0.124 nm. Solid solutions are also possible

for ceramic materials, as discussed in Section 12.5.

4.4 SPECIFICATION OF COMPOSITION
It is often necessary to express the composition (or concentration)3 of an alloy in

terms of its constituent elements. The two most common ways to specify composi-

tion are weight (or mass) percent and atom percent. The basis for weight percent
(wt%) is the weight of a particular element relative to the total alloy weight. For

an alloy that contains two hypothetical atoms denoted by 1 and 2, the concentra-

tion of 1 in wt%, C1, is defined as

(4.3)

where m1 and m2 represent the weight (or mass) of elements 1 and 2, respectively.

The concentration of 2 would be computed in an analogous manner.

The basis for atom percent (at%) calculations is the number of moles of an

element in relation to the total moles of the elements in the alloy. The number of

C1 �
m1

m1�m2

� 100

4.4 Specification of Composition • 95

composition

weight percent

atom percent

Computation of
weight percent (for 
a two-element alloy)

3 The terms composition and concentration will be assumed to have the same meaning in

this book (i.e., the relative content of a specific element or constituent in an alloy) and will

be used interchangeably.

JWCL187_ch04_090-121.qxd  11/5/09  8:47 AM  Page 95



moles in some specified mass of a hypothetical element 1, nm1, may be computed

as follows:

(4.4)

Here, and A1 denote the mass (in grams) and atomic weight, respectively, for

element 1.

Concentration in terms of atom percent of element 1 in an alloy containing

element 1 and element 2 atoms, is defined by4

(4.5)

In like manner, the atom percent of element 2 may be determined.

Atom percent computations also can be carried out on the basis of the num-

ber of atoms instead of moles, because one mole of all substances contains the same

number of atoms.

Composition Conversions

Sometimes it is necessary to convert from one composition scheme to another—

for example, from weight percent to atom percent. We will now present equations

for making these conversions in terms of the two hypothetical elements 1 and 2.

Using the convention of the previous section (i.e., weight percents denoted by C1

and C2, atom percents by and and atomic weights as A1 and A2), these con-

version expressions are as follows:

(4.6a)

(4.6b)

(4.7a)

(4.7b)

Because we are considering only two elements, computations involving the pre-

ceding equations are simplified when it is realized that

(4.8a)

(4.8b)

In addition, it sometimes becomes necessary to convert concentration from

weight percent to mass of one component per unit volume of material (i.e., from

units of wt% to kg/m3); this latter composition scheme is often used in diffusion

C¿1  �  C¿2 � 100

C1 � C2 � 100

C2 �
C¿2 A2

C¿1 A1 � C¿2 A2

� 100

C1 �
C¿1  A1

C¿1  A1 � C¿2  A2

� 100

C¿2 �
C2 A1

C1 A2 � C2 A1

� 100

C¿1 �
C1 A2

C1 A2 � C2 A1

� 100

C¿2,C¿1

C¿1 �
nm1

nm1 � nm2

� 100

C¿1

m¿1

nm1 �
m1¿
A1

Computation of
atom percent (for a
two-element alloy)

Conversion of
weight percent to
atom percent (for a
two-element alloy)

Conversion of atom
percent to weight
percent (for a two-
element alloy)

4 In order to avoid confusion in notations and symbols that are being used in this section,

we should point out that the prime (as in and ) is used to designate both composi-

tion, in atom percent, and mass of material in units of grams.

m¿1C¿1
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computations (Section 5.3). Concentrations in terms of this basis will be denoted

using a double prime (i.e., and and the relevant equations are as follows:

(4.9a)

(4.9b)

For density in units of g/cm3, these expressions yield and in kg/m3.

Furthermore, on occasion we desire to determine the density and atomic weight of

a binary alloy given the composition in terms of either weight percent or atom percent.

If we represent alloy density and atomic weight by ave and Aave, respectively, then

(4.10a)

(4.10b)

(4.11a)

(4.11b)

It should be noted that Equations 4.9 and 4.11 are not always exact. In their

derivations, it is assumed that total alloy volume is exactly equal to the sum of the

volumes of the individual elements. This normally is not the case for most alloys;

however, it is a reasonably valid assumption and does not lead to significant errors

for dilute solutions and over composition ranges where solid solutions exist.

Aave �
C¿1 A1 � C¿2 A2

100

Aave �
100

C1

A1

�
C2

A2

rave �
C¿1 A1 � C¿2  A2

C¿1 A1

r1

�
C¿2  A2

r2

rave �
100

C1

r1

�
C2

r2

r

C–2C–1r

C–2 �
±

C2

C1

r1

�
C2

r2

≤
� 103

C–1 �
±

C1

C1

r1

�
C2

r2

≤
� 103

C–2 2 ,C–1
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Computation of
density (for a two-
element metal alloy)

Computation of
atomic weight (for a
two-element metal
alloy)

Conversion of
weight percent to
mass per unit
volume (for a two-
element alloy)

EXAMPLE PROBLEM 4.2

Derivation of Composition-Conversion Equation

Derive Equation 4.6a.

Solution

To simplify this derivation, we will assume that masses are expressed in units

of grams and denoted with a prime (e.g., Furthermore, the total alloy

mass (in grams) isM¿
m¿1 2 .
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(4.12)

Using the definition of (Equation 4.5) and incorporating the expression

for nm1, Equation 4.4, and the analogous expression for nm2 yields

(4.13)

Rearrangement of the mass-in-grams equivalent of Equation 4.3 leads to

(4.14)

Substitution of this expression and its equivalent into Equation 4.13 gives

(4.15)

Upon simplification we have

which is identical to Equation 4.6a.

EXAMPLE PROBLEM 4.3

Composition Conversion—From Weight Percent to Atom
Percent

Determine the composition, in atom percent, of an alloy that consists of 

97 wt% aluminum and 3 wt% copper.

Solution

If we denote the respective weight percent compositions as CAl � 97 and 

CCu � 3, substitution into Equations 4.6a and 4.6b yields

and

 � 98.7 at%

 �
197 2 163.55 g/mol 2

197 2 163.55 g/mol 2  �  13 2 126.98 g/mol 2
� 100

 C¿Al �
CAl 

ACu

CAl 
ACu � CCu 

AAl

� 100

C¿1 �
C1A2

C1A2 � C2A1

� 100

C¿1 �

C1M¿
100A1

C1M¿
100A1

�
C2M¿
100A2

� 100

m¿2

m¿1 �
C1M¿
100

 �

m¿1
A1

m¿1
A1

�
m¿2
A2

� 100

 C¿1 �
nm1

nm1 � nm2

�  100

C¿1

M¿ � m¿1 � m¿2
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 � 1.30 at%

  �
13 2 126.98 g/mol 2

13 2 126.98 g/mol 2  �  197 2 163.55 g/mol 2
� 100

 C¿Cu �
CCu 

AAl

CCu  AAl � CAl 
ACu

� 100

4.5 Dislocations—Linear Defects • 99

Miscel laneous  Imper fect ions

4.5 DISLOCATIONS—LINEAR DEFECTS
A dislocation is a linear or one-dimensional defect around which some of the atoms

are misaligned. One type of dislocation is represented in Figure 4.3: an extra portion

of a plane of atoms, or half-plane, the edge of which terminates within the crystal.

This is termed an edge dislocation; it is a linear defect that centers on the line that

is defined along the end of the extra half-plane of atoms. This is sometimes termed

the dislocation line, which, for the edge dislocation in Figure 4.3, is perpendicular to

the plane of the page. Within the region around the dislocation line there is some

localized lattice distortion. The atoms above the dislocation line in Figure 4.3 are

squeezed together, and those below are pulled apart; this is reflected in the slight

curvature for the vertical planes of atoms as they bend around this extra half-plane.

The magnitude of this distortion decreases with distance away from the dislocation

line; at positions far removed, the crystal lattice is virtually perfect. Sometimes the

edge dislocation in Figure 4.3 is represented by the symbol which also indicates

the position of the dislocation line. An edge dislocation may also be formed by an

extra half-plane of atoms that is included in the bottom portion of the crystal; its

designation is a �.

Another type of dislocation, called a screw dislocation, may be thought of as

being formed by a shear stress that is applied to produce the distortion shown in

Figure 4.4a: the upper front region of the crystal is shifted one atomic distance to

the right relative to the bottom portion. The atomic distortion associated with a

screw dislocation is also linear and along a dislocation line, line AB in Figure 4.4b.

The screw dislocation derives its name from the spiral or helical path or ramp that

is traced around the dislocation line by the atomic planes of atoms. Sometimes the

symbol is used to designate a screw dislocation.

�,

Edge
dislocation

line

Burgers vector
b

Figure 4.3 The atom positions around an

edge dislocation; extra half-plane of atoms

shown in perspective. (Adapted from A. G.

Guy, Essentials of Materials Science,
McGraw-Hill Book Company, New York,

1976, p. 153.)

edge dislocation

dislocation line

screw dislocation

Edge

VMSE

Screw

VMSE
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Most dislocations found in crystalline materials are probably neither pure edge

nor pure screw, but exhibit components of both types; these are termed mixed dis-
locations. All three dislocation types are represented schematically in Figure 4.5;

the lattice distortion that is produced away from the two faces is mixed, having vary-

ing degrees of screw and edge character.

Dislocation
line

Burgers vector b

D

C

(a)

A B

CD

(b)

A

b

Figure 4.4 (a) A

screw dislocation

within a crystal.

(b) The screw

dislocation in (a) as

viewed from above.

The dislocation line

extends along line

AB. Atom positions

above the slip plane

are designated by

open circles, those

below by solid

circles. [Figure (b)

from W. T. Read,

Jr., Dislocations in
Crystals, McGraw-

Hill Book Company,

New York, 1953.]

mixed dislocation
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The magnitude and direction of the lattice distortion associated with a disloca-

tion is expressed in terms of a Burgers vector, denoted by a b. Burgers vectors are

indicated in Figures 4.3 and 4.4 for edge and screw dislocations, respectively. Further-

more, the nature of a dislocation (i.e., edge, screw, or mixed) is defined by the relative

orientations of dislocation line and Burgers vector. For an edge, they are perpendicular

4.5 Dislocations—Linear Defects • 101

(a)

(b)

b

b

B

C

A

B

b

bA

C

b

Figure 4.5 (a)

Schematic

representation of a

dislocation that has

edge, screw, and

mixed character.

(b) Top view, where

open circles denote

atom positions

above the slip plane,

and solid circles,

atom positions

below. At point A,

the dislocation is

pure screw, while at

point B, it is pure

edge. For regions in

between where there

is curvature in the

dislocation line, the

character is mixed

edge and screw.

[Figure (b) from 

W. T. Read, Jr.,

Dislocations in
Crystals, McGraw-

Hill Book Company,

New York, 1953.]

Burgers vector
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(Figure 4.3), whereas for a screw, they are parallel (Figure 4.4); they are neither per-

pendicular nor parallel for a mixed dislocation. Also, even though a dislocation

changes direction and nature within a crystal (e.g., from edge to mixed to screw), the

Burgers vector will be the same at all points along its line. For example, all positions

of the curved dislocation in Figure 4.5 will have the Burgers vector shown. For metal-

lic materials, the Burgers vector for a dislocation will point in a close-packed crystal-

lographic direction and will be of magnitude equal to the interatomic spacing.

As we note in Section 7.2, the permanent deformation of most crystalline ma-

terials is by the motion of dislocations. In addition, the Burgers vector is an element

of the theory that has been developed to explain this type of deformation.

Dislocations can be observed in crystalline materials using electron-microscopic

techniques. In Figure 4.6, a high-magnification transmission electron micrograph,

the dark lines are the dislocations.

Virtually all crystalline materials contain some dislocations that were intro-

duced during solidification, during plastic deformation, and as a consequence of

thermal stresses that result from rapid cooling. Dislocations are involved in the plas-

tic deformation of crystalline materials, both metals and ceramics, as discussed in

Chapters 7 and 12. They have also been observed in polymeric materials and are

discussed in Section 14.13.

4.6 INTERFACIAL DEFECTS
Interfacial defects are boundaries that have two dimensions and normally separate

regions of the materials that have different crystal structures and/or crystallographic

orientations. These imperfections include external surfaces, grain boundaries, phase

boundaries, twin boundaries, and stacking faults.

External Surfaces

One of the most obvious boundaries is the external surface, along which the crystal

structure terminates. Surface atoms are not bonded to the maximum number of near-

est neighbors, and are therefore in a higher energy state than the atoms at interior

positions. The bonds of these surface atoms that are not satisfied give rise to a sur-

face energy, expressed in units of energy per unit area (J/m2 or erg/cm2). To reduce

Figure 4.6 A transmission electron

micrograph of a titanium alloy in which 

the dark lines are dislocations. 51,450�.

(Courtesy of M. R. Plichta, Michigan

Technological University.)
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this energy, materials tend to minimize, if at all possible, the total surface area. For

example, liquids assume a shape having a minimum area—the droplets become

spherical. Of course, this is not possible with solids, which are mechanically rigid.

Grain Boundaries

Another interfacial defect, the grain boundary, was introduced in Section 3.14 as the

boundary separating two small grains or crystals having different crystallographic

orientations in polycrystalline materials. A grain boundary is represented schemati-

cally from an atomic perspective in Figure 4.7. Within the boundary region, which is

probably just several atom distances wide, there is some atomic mismatch in a tran-

sition from the crystalline orientation of one grain to that of an adjacent one.

Various degrees of crystallographic misalignment between adjacent grains are

possible (Figure 4.7). When this orientation mismatch is slight, on the order of a few

degrees, then the term small- (or low-) angle grain boundary is used. These bound-

aries can be described in terms of dislocation arrays. One simple small-angle grain

boundary is formed when edge dislocations are aligned in the manner of Figure 4.8.

This type is called a tilt boundary; the angle of misorientation, �, is also indicated in

the figure.When the angle of misorientation is parallel to the boundary, a twist bound-
ary results, which can be described by an array of screw dislocations.

The atoms are bonded less regularly along a grain boundary (e.g., bond angles

are longer), and consequently, there is an interfacial or grain boundary energy sim-

ilar to the surface energy just described. The magnitude of this energy is a function

of the degree of misorientation, being larger for high-angle boundaries. Grain bound-

aries are more chemically reactive than the grains themselves as a consequence of

this boundary energy. Furthermore, impurity atoms often preferentially segregate

along these boundaries because of their higher energy state. The total interfacial en-

ergy is lower in large or coarse-grained materials than in fine-grained ones, because

there is less total boundary area in the former. Grains grow at elevated tempera-

tures to reduce the total boundary energy, a phenomenon explained in Section 7.13.

In spite of this disordered arrangement of atoms and lack of regular bonding

along grain boundaries, a polycrystalline material is still very strong; cohesive forces

4.6 Interfacial Defects • 103

Angle of misalignment

Angle of misalignment

Small-angle
grain boundary

High-angle
grain boundary

Figure 4.7 Schematic

diagram showing small-

and high-angle grain

boundaries and the

adjacent atom

positions.
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within and across the boundary are present. Furthermore, the density of a polycrys-

talline specimen is virtually identical to that of a single crystal of the same material.

Phase Boundaries

Phase boundaries exist in multiphase materials (Section 9.3), wherein a different

phase exists on each side of the boundary; furthermore, each of the constituent phases

has its own distinctive physical and/or chemical characteristics. As we shall see in

subsequent chapters, phase boundaries play an important role in determining the

mechanical characteristics of some multiphase metal alloys.

Twin Boundaries

A twin boundary is a special type of grain boundary across which there is a specific

mirror lattice symmetry; that is, atoms on one side of the boundary are located in

mirror-image positions of the atoms on the other side (Figure 4.9). The region of

�

b Figure 4.8 Demonstration of how a tilt boundary

having an angle of misorientation � results from an

alignment of edge dislocations.

Twin plane (boundary) Figure 4.9 Schematic diagram

showing a twin plane or boundary

and the adjacent atom positions

(colored circles).
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4.6 Interfacial Defects • 105

MATERIALS OF IMPORTANCE

Catalysts (and Surface Defects)

Acatalyst is a substance that speeds up the rate

of a chemical reaction without participating

in the reaction itself (i.e., it is not consumed). One

type of catalyst exists as a solid; reactant molecules

in a gas or liquid phase are adsorbed5 onto the cat-

alytic surface, at which point some type of inter-

action occurs that promotes an increase in their

chemical reactivity rate.

Adsorption sites on a catalyst are normally

surface defects associated with planes of atoms; an

interatomic/intermolecular bond is formed be-

tween a defect site and an adsorbed molecular

species. Several types of surface defects, repre-

sented schematically in Figure 4.10, include ledges,

kinks, terraces, vacancies, and individual adatoms

(i.e., atoms adsorbed on the surface).

One important use of catalysts is in catalytic

converters on automobiles, which reduce the emis-

sion of exhaust gas pollutants such as carbon

monoxide (CO), nitrogen oxides (NOx, where x is

variable), and unburned hydrocarbons. (See the

chapter-opening diagrams and photograph for 

this chapter.) Air is introduced into the exhaust

emissions from the automobile engine; this mix-

ture of gases then passes over the catalyst, which

adsorbs on its surface molecules of CO, NOx, and

O2. The NOx dissociates into N and O atoms,

whereas the O2 dissociates into its atomic species.

Pairs of nitrogen atoms combine to form N2 mol-

ecules, and carbon monoxide is oxidized to form

carbon dioxide (CO2). Furthermore, any unburned

hydrocarbons are also oxidized to CO2 and H2O.

One of the materials used as a catalyst in this

application is (Ce0.5Zr0.5)O2. Figure 4.11 is a high-

resolution transmission electron micrograph that

shows several single crystals of this material. Indi-

vidual atoms are resolved in this micrograph as well

as some of the defects presented in Figure 4.10.

These surface defects act as adsorption sites for the

atomic and molecular species noted in the previous

paragraph. Consequently, dissociation, combina-

tion,and oxidation reactions involving these species

are facilitated, such that the content of pollutant

species (CO, NOx, and unburned hydrocarbons) in

the exhaust gas stream is reduced significantly.

Figure 4.10 Schematic representations of surface

defects that are potential adsorption sites for catalysis.

Individual atom sites are represented as cubes.

5 Adsorption is the adhesion of molecules of a gas or liquid to a solid surface. It should not be confused with 

absorption, which is the assimilation of molecules into a solid or liquid.

Figure 4.11 High-resolution transmission electron

micrograph that shows single crystals of (Ce0.5Zr0.5)O2;

this material is used in catalytic converters for

automobiles. Surface defects represented

schematically in Figure 4.10 are noted on the crystals.

[From W. J. Stark, L. Mädler, M. Maciejewski, S. E.

Pratsinis, A. Baiker, “Flame-Synthesis of

Nanocrystalline Ceria/Zirconia: Effect of Carrier

Liquid,” Chem. Comm., 588–589 (2003). Reproduced

by permission of The Royal Society of Chemistry.]

JWCL187_ch04_090-121.qxd  11/14/09  1:56 AM  Page 105



material between these boundaries is appropriately termed a twin.Twins result from

atomic displacements that are produced from applied mechanical shear forces (me-

chanical twins), and also during annealing heat treatments following deformation

(annealing twins). Twinning occurs on a definite crystallographic plane and in a spe-

cific direction, both of which depend on the crystal structure. Annealing twins are

typically found in metals that have the FCC crystal structure, whereas mechanical

twins are observed in BCC and HCP metals. The role of mechanical twins in the

deformation process is discussed in Section 7.7. Annealing twins may be observed

in the photomicrograph of the polycrystalline brass specimen shown in Figure 4.13c.

The twins correspond to those regions having relatively straight and parallel sides

and a different visual contrast than the untwinned regions of the grains within which

they reside. An explanation for the variety of textural contrasts in this photomi-

crograph is provided in Section 4.10.

Miscellaneous Interfacial Defects

Other possible interfacial defects include stacking faults and ferromagnetic domain

walls. Stacking faults are found in FCC metals when there is an interruption in the

ABCABCABC . . . stacking sequence of close-packed planes (Section 3.12). For fer-

romagnetic and ferrimagnetic materials, the boundary that separates regions hav-

ing different directions of magnetization is termed a domain wall, which is discussed

in Section 20.7.

Associated with each of the defects discussed in this section is an interfacial en-

ergy, the magnitude of which depends on boundary type, and which will vary from

material to material. Normally, the interfacial energy will be greatest for external

surfaces and least for domain walls.

Concept Check 4.1

The surface energy of a single crystal depends on crystallographic orientation. Does

this surface energy increase or decrease with an increase in planar density? Why?

[The answer may be found at www.wiley.com/college/callister (Student Companion Site).]

4.7 BULK OR VOLUME DEFECTS
Other defects exist in all solid materials that are much larger than those heretofore

discussed. These include pores, cracks, foreign inclusions, and other phases. They are

normally introduced during processing and fabrication steps. Some of these defects

and their effects on the properties of materials are discussed in subsequent chapters.

4.8 ATOMIC VIBRATIONS
Every atom in a solid material is vibrating very rapidly about its lattice position

within the crystal. In a sense, these atomic vibrations may be thought of as imper-

fections or defects. At any instant of time not all atoms vibrate at the same fre-

quency and amplitude, nor with the same energy. At a given temperature there will

exist a distribution of energies for the constituent atoms about an average energy.

Over time the vibrational energy of any specific atom will also vary in a random

manner.With rising temperature, this average energy increases, and, in fact, the tem-

perature of a solid is really just a measure of the average vibrational activity of

atoms and molecules. At room temperature, a typical vibrational frequency is on

atomic vibration
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the order of 1013 vibrations per second, whereas the amplitude is a few thousandths

of a nanometer.

Many properties and processes in solids are manifestations of this vibrational

atomic motion. For example, melting occurs when the vibrations are vigorous

enough to rupture large numbers of atomic bonds. A more detailed discussion of

atomic vibrations and their influence on the properties of materials is presented in

Chapter 19.

Microscopic  Examinat ion

4.9 BASIC CONCEPTS OF MICROSCOPY
On occasion it is necessary or desirable to examine the structural elements and de-

fects that influence the properties of materials. Some structural elements are of

macroscopic dimensions; that is, they are large enough to be observed with the un-

aided eye. For example, the shape and average size or diameter of the grains for a

polycrystalline specimen are important structural characteristics. Macroscopic

grains are often evident on aluminum streetlight posts and also on highway

guardrails. Relatively large grains having different textures are clearly visible on the

surface of the sectioned copper ingot shown in Figure 4.12. However, in most

materials the constituent grains are of microscopic dimensions, having diameters

that may be on the order of microns,6 and their details must be investigated using some
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Figure 4.12 Cross-

section of a cylindrical

copper ingot. The

small needle-shaped

grains may be

observed, which

extend from the

center radially

outward.

6 A micron (�m), sometimes called a micrometer, is 10�6 m.
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